
ECE 435 – Network Engineering
Lecture 6

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 February 2023

https://web.eece.maine.edu/~vweaver

Announcements

• HW#3 will be posted. Encryption.

• HW#2 was extended to Friday

1

HW#2 Notes – Knowing Request is Done

• How do you know you’ve read all the data from a socket

without blocking when you hit the end?

• Short answer: you can’t. TCP is a byte stream, you

don’t get to see packet boundaries.

◦ Ideally you’ll read things in and handle the values in

each read independently, even if they are incomplete

◦ Also your protocol can contain info that lets you know

how long things are (content-length), or have a signal

(like the empty newline in http after headers) that let

2

you know

◦ You can set the fd to be non-blocking, but then you

have to busy-wait which is not optimal

◦ You can use poll() to be notified when a fd has data

but that’s complex

◦ The recv() call (unlike read()) has some extra flags

that can help. On Linux can pass MSG DONTWAIT

which will not-block and just return an error if no data

is available

3

Asymmetric / Public Key Encryption

• Asymmetric/Public Key

• Key exchange is weakest link of symmetric encryption,

as both sides need it and if it leaks, all is lost

• Have a public key that anyone can use to encrypt a

message. Can only be (easily) decrypted by a secret,

private key

• Hard to solve math problems. Integer factorization,

discrete logarithm, elliptic curves

• Often only used to encrypt small amounts of data,

4

i.e. used to encrypt a symmetric key used for longer

transactions

5

Uses of Public Key Crypto

• public key encryption, public key used to encrypt message

only holder of private key can decrypt

• digital signature: message signed with private key and

anyone with access to public key can verify the original

sender

6

RSA

• Rivest/Shamir/Adleman at MIT (1977)

Discovered before by UK govt (1973) but classified

• Choose two large primes p and q (1024+ bits)

• Compute: n=p*q, z=(p-1)*(q-1)

• Choose number relatively prime to z: d

(no common factors)

• Find e such that e*d mod z=1

• Divide plaintext into blocks 0 ≤ P < n, blocks of k bits

where k largest 2k < n

7

• To encrypt, compute C = P e mod n

• To decrypt, compute P = Cd mod n

• public key is e,n. private key is d,n

• Hard to break as you need to factor n (hard)

• How do you find p and q? Random number, then apply

various tests to determine if prime

8

RSA Example

• Example from Tanenbaum Figure 8-17:

Pick two large primes: p=3, q=11

n=p*q=33, z=(p-1)*(q-1)=20

d=7 (no common factors with 20)

7 ∗ e mod 20 = 1 so e=3

To encrypt say ”13”, 133 = 2197,mod33 = 19

To decrypt say ”19”, 197 = 893871739mod33 = 13

9

Why RSA Not Used Anymore

• Needs really good random primes, if you pick bad primes

can be easier to crack (if p and q too close together)

• Slow, so on low-power devices tempting to pick low value

exponents

• Adding more bits only slowly adds better encryption

• No random element, so can tell if the same message

sent twice because will encrypt to the same (or can

brute force easier)

Fix to this is random padding at end

10

• Improper padding can lead to “padding oracle” attack

(if you get an invalid padding error on invalid cyphertext,

can slowly work your way to the key)

11

Other Algorithms

• Prime Number Factoring

• Elliptic Curve Cryptography (ECC)

Smaller keysize

12

Cryptographic Hash Functions

• Maps a document of arbitrary size to a fixed size

• Easy to calculate, hard to reverse. Only real feasible way

to reverse is brute-force search

• Should not be able to find two different messages with

same hash

• Small changes in document should lead to very different

hashes

• Two items with same hash are a collision

Are collisions useful? If you can map documents of

13

same filetype, or if somehow same document with lots

of garbage on end

• Break file up into chunks, do a series of operations to

“compress” it, often shift, xor, or, add, and, not

14

Cryptographic Hash Algorithms – md5

• md5 md5sum (Rivest) (1991, replacing md4)

• 128-bit md5 hashes, create checksum, almost uniquely

ID file

supposed to be unlikely to get collision

• Been broken, easy to defeat since 2007

◦ Birthday attack, while creating two files with same sum

hard, creating a huge number of files the likelyhood

of getting two to be the same is more likely than you

think

15

◦ Chosen-prefix attack – in this case take two differing

start texts, by appending arbitrary data to each (in a

comment section in some formats like PDF) can find

match

16

SHA-1

• Developed by NSA 1993

• 160-bits (40 hex digits)

• Used by git

• Deprecated by NIST since 2011

• SHAppening (2015)

• SHAttered (2017) first collision (pdf file)

• chosen-prefix attack 2019

17

SHA-2, SHA-3

• SHA-2 (Secure-Hash Algorithm 2)

◦ Designed by NSA, 2001

◦ 224, 256, 384 or 512 bits

◦ Merkle-Damg̊ard construction

• SHA-3

◦ Keccak, Sponge Construction

◦ Different than others. Not meant to replace SHA-2 as

SHA-2 not broken yet

18

Cryptographic Hash Uses

• passwords (/etc/shadow)

• (mostly) uniquely identifying a file (git),

• verifying file contents (download, error checking),

• bitcoin?

19

Proof of Concept —— GTFO

• Had fun generating collisions

20

Other Encryption Concerns

• Redundancy, some way to validate plaintext is valid.

Example: if encrypting a binary blob where each byte

indicates something (12 34 means order 34 cows or

something), random garbage might decode to valid

message

• Freshness – replay attacks. What if you record old

message (Bank deposits $100 to account) and replay.

Will have valid encryption.

21

Encryption Problems

• Keys leaked (DVD/game console issues)

• poor random numbers used (Debian problem)

• differential cryptanalysis (start with similar plaintexts

and see what patterns occur in output) [DES IBM/NSA

story]

• Power/Timing analysis – note power usage or

timing/cache/cycles when encryption going on, can leak

info on key or algorithm

Bane of perf

22

• Quantum computers

23

Trusting Trust

• When setting up an encrypted connection, how do you

verify who is on the other side?

• How can you protect from man-in-the-middle attacks

(MitM) where someone intercepts them downloading

your public key, replaces with their own, then sits in the

middle decrypting/re-encrypting in a transparent way?

• Some companies/countries will actually do this quite

openly

24

Key Signing Parties

• One way is to have get-togethers were friends sign each

others keys

• If enough people do this, you can create a “chain

of trust” where you can track someone’s identity to

someone you trust

• Linux kernel sorta tries this for git development

• Trouble for new people, or remote people, or people who

don’t travel much, or don’t have many friends

25

Certificate Authorities

• Certificate authority – an official organization that

verifies identities

• Will sign a “certificate” saying who you say you are

• Operating Systems/Web-browsers will ship with a list of

officially trusted Certificate Authorities

• Can hover over the lock symbol in URL bar to verify

who signed for a website

• Hashed?

• Can be revoked

26

SSL/TLS

• Secure Socket Layer / Transport Layer Security

• Handshake protocol followed by key exchange

• Browser says hello, which hashes/algorithms it supports

• Server picks one and sends back

• Server then sends a certificate (signed by authority)

saying who it is, and what its public key is

• Client verifies certificate (via the CA public key it has

stored)

• client generates a random number, encrypts with servers

27

public key, sends to server, used as symmetric key

• What could go wrong, what if someone gets a hold of

server private key? could decrypt logged data.

• Could try Diffie-Hellman key exchange – random number

plus unique session key prevents problems if server private

key leaked

28

Diffie-Hellman (used by ssh)

• Both sides agree on large prime number

• Both sides agree on algorithm (AES?)

• Each side picks independently picks another secret prime

number.

This is not the authentication private key.

• The secret prime, AES, and shared prime are used to

make a public key derived from the private key.

• The generated public key is shared

• The other side uses their own private key, the other side

29

public key, and shared prime to figure out the shared

secret key.

• This secret key is then used for symmetric encryption.

• Example on p812

30

Other tools that use encryption

• How do you encrypt an e-mail, or a hard-drive, etc

• PGP – pretty good privacy

OpenPGP RFC 4880

Encrypt message with symmetric key, send along the key

encrypted via asymmetric

was illegal for a while (more than 40 bit encryption an

exportable munition)

people got RSA algorithm in perl tattoos

• GPG – free software replacement for PGP

31

• Can also PGP sign a message. Not encrypted, but signed

with your key to verify it was in fact sent by you. Takes

hash of the input, then encrypts the hash with key. Also,

downloads from servers (like debian)

32

