ECE435: Network Engineering – Homework 7 Internet Protocol v4

Due: Friday, 14 March 2025, 5:00pm

For this homework short answers will suffice.

To submit, create a document with your answers (text, pdf, libreoffice, MS Office if you must) and e-mail them to *vincent.weaver@maine.edu* by the homework deadline. Title your e-mail "ECE435 Homework 7" and be sure your name is included in the document.

1. If you recall from previous homeworks we looked at a packet similar to this:

0x0000:	0013	3b10	667f	b827	ebaf	3711	0800	4500	;.f′7E.
0x0010:	0038	572a	4000	4006	69cc	c0a8	0833	826f	.8W*@.@.i3.0
0x0020:	2e7f	bda5	0050	cdc4	6a49	3c7b	6ca5	8018	PjI<{l
0x0030:	00e5	79£4	0000	0101	080a	0104	3e58	34a8	y>X4.
0x0040:	7bc3	4745	540a						{.GET.

The IPv4 header begins at offset 0xe.

Fill in the table with the name of the field as well as the decoded value. Use decimal when decoding if it makes sense, provide units if necessary, and if the value decoded has a meaning (such as a flag of pre-defined value) say what it means. Give sizes in bytes if possible, and any IPv4 addresses show in dotted decimal.

For help decoding the IPv4 header see the class notes or else RFC791.

BEGIN IP	v4 HEA	DER	Name of Field	Decoded Value	
0x000e:	4				
0x000e:	5				
0x000f:	00				
0x0010:	0038				
0x0012:	572a				
0x0014:	4000				
0x0016:	40				
0x0017:	06				
0x0018:	69cc				
0x001a:	c0a8	0833			
0x001e:	826f	2e7f			
END IPv4 HEADER					

- 2. Which of the following are valid IPv4 addresses?
 - (a) 1.1.1.1
 - (b) 123.67.267.44
 - (c) 192.168.8.1
 - (d) 3232237569
 - (e) 0xc0a80801
- 3. Early internet adopters got large IPv4 allocations. For example Ford (the car company) owned all of 19.0.0.0/8. What percentage of the entire IPv4 space is that? (Somewhat related, this old xkcd comic gives an interesting map of the IPv4 situation at the time: https://xkcd.com/195/)
- 4. A network is described as 192.168.13.0/24.
 - (a) What would be the subnet mask for this subnet?
 - (b) What would be the lowest IP address you could assign on this subnet?
 - (c) What would be the highest IP address you could assign on this subnet?
- 5. Traditionally on Linux you could use the route command to find out the IP routing information for a system. Here are the results from a Raspberry Pi on one of my networks.

pi3:~\$ /sbin/rou	ute						
Kernel IP routing table							
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
default	192.168.8.2	0.0.0.0	UG	0	0	0	eth0
192.168.8.0	0.0.0.0	255.255.255.0	U	0	0	0	eth0

The <code>route</code> command is now considered deprecated and you can now find the same info with the <code>ip</code> <code>route</code> command

```
pi3:~$ ip route
default via 192.168.8.2 dev eth0 proto dhcp src 192.168.8.138 metric 202
192.168.8.0/24 dev eth0 proto dhcp scope link src 192.168.8.138 metric 202
```

- (a) If a packet is sent to 216.58.192.132, what is its first "hop" on the way?
- (b) If a packet is sent to 192.168.8.50 what is its first "hop" on the way?
- 6. Use the "ping" command on a network connected machine to ping www.google.com. (If you don't have access to a machine with ping on traceroute available, let me know and I can provide access)
 - (a) What is the round-trip packet time?
 - (b) Do you notice anything odd about the hostname that responds?

- 7. Use the "traceroute" command. It's tracert on Windows.
 - (a) traceroute www.maine.edu. How many hops away is it? Do you recognize any of the names in the hops along the way?
 - (b) traceroute www.facebook.com. How many hops away is it? Do the response times gradually go up for each further hop?

8. Network Address Translation

(a) You use tcpdump to monitor your network and see packets such as this go by:

```
16:58:49.108396 00:13:3b:10:66:7f (oui Unknown) >
00:50:b6:47:1c:de (oui Unknown), ethertype IPv4 (0x0800),
length 141: google-public-dns-a.google.com.domain >
macbook-air.51415: 30858 2/0/0
CNAME pagead46.1.doubleclick.net., A 172.217.7.130 (99)
```

where macbook-air has the address 192.168.8.38 and it is connecting to IP 8.8.8.8. Is it normal for an address like 192.168.8.38 to be able to connect directly to 8.8.8.8? Why or why not?

What is the likely reason this is working?

(b) You can use the netstat-nat command on a Linux machine doing NAT to see all of the nat connections. Some sample output is below.

Proto	NATed Address	Destination Address	State
tcp	macbook-air:51908	49.246.178.107.bc.google:https	ESTABLISHED
tcp	macbook-air:55194	iad23s63-in-f19.1e100.ne:https	ESTABLISHED
tcp	macbook-air:42334	206-140.amazon.com:https	TIME_WAIT
tcp	macbook-air:52930	104.16.78.166:https	ESTABLISHED
tcp	macbook-air:57928	akamai-1-s.net.maine.edu:http	ESTABLISHED
udp	macbook-air:58903	google-public-dns-a.goo:domain	ASSURED
udp	macbook-air:49779	google-public-dns-a.goo:domain	ASSURED
udp	macbook-air:44416	google-public-dns-a.goo:domain	UNREPLIED
udp	pi2:ntp	clock.xmission.com:ntp	ASSURED
udp	pi2:ntp	38.88.18.251:ntp	ASSURED
udp	pi2:ntp	<pre>tock.no-such-agency.net:ntp</pre>	ASSURED

One of the UDP connections is listed as UNREPLIED. Why might the NAT firewall track whether a UDP packet has been replied to or not?

Not a question, but you might know enough about IP networking now to find this novelty notepad amusing:

	col Datagram	RFC791				
Source	Destination	Version If other than version 4, attach form RFC 2460.				
Type of Service high reliability high throughput low delay Protocol TCP UDP Other Length Header I		Fragmentation Offset Transport layer use only				
Time to Live O	ptions					
	ot write					
Header Checksum						
for more info, check IPv4 specifications at http://www.ietf.org/rfc/rfc0791.txt						