
ECE 435 – Network Engineering
Lecture 2

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 January 2025

https://web.eece.maine.edu/~vweaver

Announcements

• Homework 1 will be posted.

Will be on website, will announce via mainestreet e-mail

Due next Friday (via e-mail)

1

Client and Server

• Client: makes requests

• Server: listens for requests, and responds

• Can you be both?

2

Homework #1

• Write a client and a server

• Server waits for incoming network connection.

When one comes in it is opened and it listens for text.

It takes that text back, interprets it, sends a response.

• Client opens a connection to server. Takes input from

the keyboard and sends it to server, waits for response,

and prints response.

• How would you code this up?

3

Homework #1 – Code Notes

• I provide a lot of the code for you as writing socket code

completely from scratch is a huge pain

• If you took ECE471 this might seem straightforward

• I might not be able to cover all this before the assignment

is assigned. We should be able to cover it all by Monday

• Sorry this involves throwing a lot of C at you right at

the start of the semester

4

Homework #1 – Hardware Notes

• Assume you have a Linux machine

• Can also do this on OSX if you have compiler/etc

installed

• Also in windows, maybe if you install the new Linux

subsystem for it? Or run Linux in a VM?

• If you can’t do any of those things, I can provide an

account you can ssh into to do the homework.

5

Homework #1 – Something Cool

• Last point is for something cool

• As described, do this in a separate copy of the code to

make grading easier

6

Socket Programming

• BSD sockets – Berkeley UNIX, 1983

Why the standard? Right place at right time, also “free”

and open-source

• Sort of at the transport layer, we are skipping ahead here

• Will reuse the code throughout the semester

• Can use for things other than TCP/IP (AF UNIX,

netlink, bluetooth, IPX, appletalk, etc)

7

Low level C programming

• Why C code?

◦ Close to hardware.

◦ Always know what’s going on.

◦ Performance.

◦ I like it.

• Why not C-code?

◦ Hard to code

◦ Security

8

Other Languages

• Python

◦ Low-level interface a lot like C one

◦ Higher level sockserver interface

• Java

◦ More abstraction

◦ java.net, socket=newsocket(addr,port);

• Rust

◦ std::net

9

Small C Program

What do all the parts do?

argc/argv handle command line arguments.

what are sycalls?

How does printf work?

#include <stdio.h>

int main(int argc , char **argv) {

printf("Hello world\n");

return 0;

}

10

File descriptors and system calls

• At the lowest level, everything on UNIX/Linux is a “file”

(or is supposed to be)

• Files are tracked per-process, with an integer value file

descriptor acting as a sort of reference.

• Your process starts out with three open files, STDIN (0),

STDOUT (1), STDERR (2)

• You can create more file descriptors with various system

calls. open() is a common one. Returns -1 on error.

11

More File descriptors and system calls

• Once you have a file descriptor, use syscalls such as

read(), write(), ioctl() to do I/O

• You can close() when you are done

• Magic of Linux/UNIX is not just disk files, but all devices

act as files and same syscalls work on them.

• Just to be difficult though the socket interface does

things slightly differently (you don’t use open() on

/dev/network, some people are still angry about this

12

Socket Syscalls

remember: use man for documents, e.g. man socket

• SOCKET – create a new endpoint

• BIND – associate an address with a socket

• LISTEN – announce willing to accept connections

• ACCEPT – passively establish incoming connection

• CONNECT – actively attempt to establish connection

• SEND – send data

• RECEIVE – receive data

• CLOSE – close connection

13

Writing a Simple Server

14

Opening a socket for listening

/* Open a socket to listen on */

/* AF_INET means an IPv4 connection (others are possible) */

/* SOCK_STREAM means reliable two -way connection (TCP) */

/* last argument is protocol subset. We leave at zero */

int socket_fd = socket(AF_INET , SOCK_STREAM , 0);

if (socket_fd <0) {

fprintf(stderr ,"Error opening socket! %s\n",

strerror(errno));

}

15

Setting an Address

• More layer violations

• While in theory generic, we are coding to TCP/IP here

• Address is a 32-bit number that uniquely identifies

system

IP Address, often written 127.0.0.1 but it’s actually just

a 32-bit integer

16

Setting the Port

• Port is how you handle multiple applications on same

machine, based on the “port” it can map back to which

application (the OS has a table)

• On TCP/IP limited to a 16-bit port number (65536)

17

Network Byte Order

• The address and port are in network byte order, which

is big-endian (stored biggest byte first)

• Most modern machines are little-endian (stored smallest

byte first)

• You will need to convert the address and port to the

proper endianess

• Aside/example on endianess

18

Network Byte Order Conversion

• htonl() will convert a long (32-bit)

host to network order long

• htons() will convert a short (16-bit)

host to network order short

• Can you convert the other way? Yes, there’s also

ntohl() and ntohs()

19

Setting up Address

• memset() to clear memory to zero, be sure to get order

of arguments right!

• C structures and how they work

• Casting, lets us fake pointer type for all types of

connections and cast to right one.

• We’re a server and listening for any address

• We use 0.0.0.0 which means to listen on all networks

• No need to explicitly set 0.0.0.0, the zeroing by memset

does it for us

20

/* for reference , these live in header file */

/* /usr/include/x86_64 -linux -gnu/sys/socket.h etc */

struct in_addr { uint32_t s_addr; };

struct sockaddr_in {

sa_family_t sin_family;

in_port_t sin_port;

struct in_addr sin_addr;

};

/* Set up the server address to listen on */

struct sockaddr_in server_addr;

/* Clear struct , also sets the address to 0.0.0.0 */

memset (& server_addr ,0,sizeof(struct sockaddr_in));

server_addr.sin_family=AF_INET;

/* Convert the port we want to network byte order (short) */

server_addr.sin_port=htons(port);

21

bind() system call

• bind() gives the socket an address, in this case 0.0.0.0

from above

/* Bind to the port */

if (bind(socket_fd , (struct sockaddr *) &server_addr ,

sizeof(server_addr)) <0) {

fprintf(stderr ,"Error binding! %s\n", strerror(errno));

}

22

listen() system call

Sets up a data structure to hold pending incoming

connections in case more than one come in at once.

/* Tell the server we want to listen on the port */

/* Second argument is backlog , how many pending connections can */

/* build up */

listen(socket_fd ,5);

23

accept() system call

• Blocks waiting for incoming connection

• When comes in, gets *new* file descriptor (careful)

• You can take this and fork a new thread to handle it

(why?)

/* Call accept to create a new file descriptor for an incoming */

/* connection. It takes the oldest one off the queue */

/* We’re blocking so it waits here until a connection happens */

client_len=sizeof(client_addr);

new_socket_fd = accept(socket_fd ,

(struct sockaddr *)& client_addr ,& client_len);

if (new_socket_fd <0) {

fprintf(stderr ,"Error accepting! %s\n",strerror(errno));

}

24

read() system call

Can also use recv() if need extra options.
#define BUFFER_SIZE 1024

char buffer[BUFFER_SIZE];

/* Someone connected! Let’s try to read BUFFER_SIZE -1 bytes */

memset(buffer ,0, BUFFER_SIZE);

n = read(new_socket_fd ,buffer ,(BUFFER_SIZE -1));

if (n==0) fprintf(stderr ,"Connection to client lost\n\n");

else if (n<0) {

fprintf(stderr ,"Error reading from socket %s\n",

strerror(errno));

}

/* Print the message we received */

printf("Message from client: %s\n",buffer);

25

write() system call

Can also use send() if need extra options.

/* Send a response */

n = write(new_socket_fd ,"Got your message , thanks!" ,25);

if (n<0) {

fprintf(stderr ,"Error writing. %s\n",

strerror(errno));

}

26

close() system call
printf("Exiting server\n\n");

/* Close the sockets */

close(new_socket_fd);

close(socket_fd);

27

Server Summary

• socket() – tell kernel to create socket

• set up address/port

• bind() – assign address to socket

• listen() – start listening on socket

• accept() – wait for incoming connection, assign file

descriptor

• recv()/read() – get data

• send()/write() – send response

• close() – close connection

28

• close() – close socket

29

HW#1 – Keeping Server Open

• I provide code that does a simple, once-through server

transaction

• What if you want to keep the server open and listening

for multiple transactions of same connection?

• You will need to loop. Where should we loop to?

• After write, loop back to just before the read. Don’t

loop to before the accept or else you’ll just continually

start new connections, not re-use the current

30

Server Handling Multiple Connections

• High-end servers (like webservers) can handle multiple

active connections at once.

• You can use accept to get file descriptors for multiple

connections

• How can you handle this? Rapidly query each fd over

and over to see if any data has come in? Inefficient.

• A few ways to handle

◦ poll()/select() let you set up an array of fds and get

notified if any see activity

31

◦ alternately, fork() or spawn a thread for each fd and

handle separately

32

TIME WAIT

• If you quit and immediately try to restart server might

get error saying socket busy.

• Spec says you should wait a minute for all packets to

clear out. You can wait, or can force with

int on=1; /* we want to turn the feature on */

setsockopt(s,SOL_SOCKET ,SO_REUSEADDR ,

(char *)&on,sizeof(on));

33

Client Code

• Ran out of time, see Monday’s lecture notes

34

