# ECE 435 – Network Engineering Lecture 24

Vince Weaver https://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

28 March 2025

#### Announcements

- Show Wireless Spectrum Allocation Poster
- Don't forget project topics/groups due
- HW#8 due today
- Will post HW#9



# **Physical Layer – Wireless**

- First some Physics review
- $\bullet$  c=speed of light in vacuum  $3\times 10^8 m/s$  (roughly 1 foot/ns)
- In wire/fiber more like 2/3 of value, freq dependent
- $\bullet~f=$  frequency, oscillations per second
- $\lambda =$  wavelength, distance between two peaks
- $\lambda f = c$
- $\bullet$  Bandwidth varies with f, but can get roughly 8bits/Hz
- bandwidth calc  $\Delta f = \frac{c\Delta\lambda}{\lambda^2}$



#### **Electromagnetic Spectrum**

See chart below. Why aren't UV, x-ray and gamma rays used much?

Rough table, based on one found on Wikipedia



| Туре            | Name       | Freq   | Wavelength  |
|-----------------|------------|--------|-------------|
| lonizing        | Gamma      | 300EHz | 1pm         |
|                 | Hard X     | 30EHz  | 10pm        |
|                 |            | 3EHz   | 100pm       |
|                 | Soft X     | 300PHz | 1nm         |
|                 | Extreme UV | 30PHz  | 10nm        |
| Visible         | Near UV    | 3PHz   | 100nm       |
|                 | Visible    | 300THz | $1 \mu$ m   |
|                 | Near IR    | 30THz  | $10 \mu$ m  |
|                 | Mid IR     | 3THz   | $100 \mu$ m |
|                 | Far IR     | 300GHz | 1mm         |
| Radio/Microwave | EHF        | 30GHz  | 1cm         |
|                 | SHF        | 3GHz   | 10cm        |
|                 | UHF        |        |             |
|                 | VHF        | 300MHz | 1m          |
|                 | HF         | 30MHz  | 10m         |
|                 |            | 3MHz   | 100m        |
|                 | MF         | 300kHz | 1km         |
|                 | LF         | 30kHz  | 10km        |
|                 | VLF        | 3kHz   | 100km       |
|                 | ULF        | 300Hz  | 1Mm         |
|                 | SLF        | 30Hz   | 10Mm        |
|                 | ELF        | 3Hz    | 100Mm       |

#### **Radio Transmission**

- Radio from 3kHz to 1GHz. VLF (3-30kHz) LF (30-300kHz) MF (300kHz-3MHz) HF (3-30MHz) VHF (30MHz-300MHz) UHF (300MHz-3GHz)
- Even lower? ELF (80Hz) submarines?
  - Hard to transmit to submarines, high frequencies can't go under water
  - You can transmit at 80Hz or so, but slow 1 bit per minute / 17mbps (mili-bits)
  - Need extremely long (km-scale) fancy arrays. Cold war



US (UP-MI) (decommissioned), Russia, India, China
Higher: Above 30GHz air stops after 1km, above 300GHz after few meters (until you get to visual range)



# **Radio Propagation**

- Can travel long distances, omni-directional (go in all directions)
   why is omni bad? interference, everyone can hear
- Inverse square law at lower frequencies
- High frequencies go in straight lines and bounce off things and absorbed by rain
- VLF, LF and MF follow ground
- MF (AM radio) pass through buildings, but low bandwidth



• VHF can bounce off ionosphere



#### Microwaves

- Digression about optics class at UMD
- 1GHz to 300GHz (overlap with UHF)
- $\bullet$  GPS at 1.2 and 1.6GHz, Wifi 2.4GHz and 5GHz
- Microwaves, above 100MHz travel in nearly straight lines, can be focused.
- Up to 10GHz used, but above 4GHz absorbed by water (only few inches long)
- Issues: Absorbed by water, as in microwave oven.
   Multipath Fading



#### **Microwave Infrastructure**

- Climb many hills in Maine, will be a microwave tower at top
- Popular before fiber for long-distance data communication, relaying from hill to hill
- Benefits: no need to dig up right of way (MCI, microwave towers. Sprint Southern Pacific railroad fiber)
- Recently new, shorter paths built for high-frequency trading. Saving a few ms in latency worth it for them



### Infrared

- 300GHz-400THz
- cannot penetrate walls (is that good or bad?)
- IrDA



# **Visible Light**

- Networks that modulate the lightbulbs in a room?
- Laser links between roofs of buildings (cannot penetrate fog well)
- No need for FCC license
- Hard to tap



# **Electromagnetic Spectrum**

- Government regulated
  - ITU (international telecommunication union)
  - FCC (federal communications commission) US
- How is it distributed?
- Modern times auction off
  - When analog TV discontinued, freed up frequency ranges
  - auction, lead to crazy large fees but then companies can't actually pay them



# Could we live without Government Spectrum Regulation

- Would be lots of interference, strongest signal would win
- Many bands might be unusable
- Some ways to try to avoid this
  - "spread spectrum"
  - $\circ$  frequency hop until find one that's free.



# ISM (Industrial/Scientific/Medical) Ranges

- Mostly unregulated bands
  - 902-928MHz (1W in US)

Garage doors, old cordless phones (what happened when people would listen in on calls?)

 $\circ$  2.4 - 2.4835 GHz

Old wifi, new cordless phones, bluetooth, poorly shielded microwave ovens

5.735 - 5.860GHz
 New wifi



# **Communications Satellites**

- Put satellite in space, can relays signals from ground stations on earth
- The earliest ones were just reflectors
- Later ones would receive, amplify, and retransmit Could in theory be hacked if you could overwhelm groundstation signal
- Modern ones properly encrypted and stuff, can still be jammed?
- Certain frequencies allocated to avoid microwave



interference L (1.5GHz), S (1.9GHz) C (4.0GHz) Ku (11GHz) Ka (20GHz). Higher bands have problems with rain.



#### **Geostationary Satellites**

- At 35,800km orbital period is 24 hours, so satellite always above same place on earth
- If above equator essentially fixed (though do need some stationkeeping)
- Can aim fixed satellite dish at it
- Need to be at least 2 degrees apart to avoid interference, so only 180 slots. But can use tricks to avoid this (different frequencies, polarization). ITU regulates slots
- 250 to 300ms latency



# Medium-earth Orbit (MEO) Satellites

- closer than GEO (between the radiation belts).
- Not widely used, but GPS is here.
- Less powerful transmitter needed.



# Low-earth Orbit (LEO) Satellites

- LEO gives best latency (25ms)
- Need a lot of them (field of view), only few hundred miles up so can't see all of earth
- Move fast so have to aim antenna
- Require less power on both sender and receiver
- atmosphere thicker so orbits can decay faster



# Iridium

- First example of large LEO constellation for satellite phones
- Iridium (77) not Dysprosium (66)
- Went bankrupt, bailed out by government because useful



# Starlink

- SpaceX Starlink is a sudden but overwhelming contender
- 7000 in orbit now, plan for 12k to 42k total literally launching more each week
- Different shells/inclinations for global coverage
- Currently just bounce your signal to local ground station, eventual goal is laser links between satellites to expand coverage range
- Special phase-array antennas, essentially steer signal in software/DSPs rather than moving it



# **Other Constellations**

- OneWeb
- Amazon Kuiper
- SpaceSail (China) 15k planned
- Europe Eutelsat



#### **Issues with Large Constellations**

- Space Debris / Kessler Syndrome
- Astronomers not like it (streaks in photos)
- Who regulates these? FCC still controls all US related launches



# Satellite vs Fiber

- Satellite benefits
  - Satellite anyone with a dish can tap in anywhere, Fiber: point to point.
  - Satellite works for mobile (airplanes, ships, etc)
  - $\circ$  Satellite allows broadcast: send once, receive by many
  - Satellite works in difficult landscapes where it is hard to lay fiber. It's uneconomical to lay fiber to every house in distant regions
  - Rapid deployment just launch a satellite (though you



have to have it ready to go and a rocket ready to go. That's become easier recently)

- Fiber benefits
  - Lower latency than geostationary satellites (benefit not as pronounced with low-earth orbit)
  - Satellite can be blocked by trees, weather (heavy rain), solar storms
  - Harder to jam. Satellites can be zapped from a wide area, with fiber need to physically go and dig up
     Privacy – harder to intercept fiber?
  - Unclear benefit
- Unclear benefit



- Harder to destroy? Varies. Accidental satellite collisions. Accidental backhoes.
   Militaries have ways for taking out satellites (though they can make a huge mess in orbit)
- Cost: be careful with this one. Depends a lot on the situation.

