ECE 435 — Network Engineering
Lecture 2

Vince Weaver
https://web.eece.maine.edu/~vweaver
vincent.weaverOmaine.edu

Barrows 123, Friday 10am

23 January 2026

https://web.eece.maine.edu/~vweaver

Announcements

e Homework 1 will be posted.
Will be on website, will announce via mainestreet e-mail
Due next Friday (via e-mail)

e Possibly helpful reference for socket programming:
https://beej.us/guide/bgnet/

https://beej.us/guide/bgnet/

Client and Server

e Client: makes requests
e Server: listens for requests, and responds

e Can you be both?

Homework #1

e Write a client and a server

e Server: waits for incoming network connection.

When one comes in it is opened and it listens for data.
As data arrives, interprets it, sends a response.

e Client: opens a connection to server. Takes input from
the keyboard and sends it to server, waits for response,
and prints response.

e How would you code this?

Homework #1 — Code Notes

e | provide a lot of the code for you as writing socket code

completely from scratch is a
o If you took ECE471 this mig
e | might not be able to cover a
s assigned. We should be ab
e Sorry this involves throwing
the start of the semester

huge pain
nt seem straightforward
| this before the assignment

e to cover it all by Monday
a lot of C at you right at

e Do take it seriously, we will revisit the code throughout

the semester and it can be a

good base for final project.

Homework #1 — Al Notes

e It says this in the syllabus but maybe | didn't stress it
enough

e |'d prefer if you didn't use Al

e | know it's unenforceable

Homework #1 — Hardware Notes

e Assume you have a Linux machine

e Can also do this on OSX if you have compiler/etc
installed

e Also in windows, maybe if you install the new Linux
subsystem for it? Or run Linux in a VM?

e If you can't do any of those things, | can provide an
account you can ssh into to do the homework.

Homework #1 — Something Cool

e Last point is for something cool
e As described, do this in a separate copy of the code to
make grading easier

Socket Programming

e BSD sockets — Berkeley UNIX, 1983
Why the standard? Right place at right time, also “free”
and open-source

e Sort of at the transport layer, we are skipping ahead here

e Will reuse the code throughout the semester

e Can use for things other than TCP/IP (AF_UNIX,
netlink, bluetooth, IPX, appletalk, etc)

-y 8

Low level C programming

e Why C code?
o Close to hardware.
o Always know what's going on.
o Performance.
o | like it.
e Why not C-code?
o Hard to code

- Security

Other Languages

e Python
o Low-level interface a lot like C one
o Higher level sockserver interface
e Java
o More abstraction
o java.net, socket=newsocket(addr,port);
e Rust
o std::net
e Note Websockets are something different

10

Small C Program

What do all the parts do?

argc/argv handle command line arguments.
what are syscalls?

How does printf work?

#include <stdio.h>

int main(int argc, char x**xargv) {
printf ("Hello world\n");
return O;

11

File descriptors and system calls

e At the lowest level, everything on UNIX/Linux is a “file”
(or is supposed to be)

e Files are tracked per-process, with an integer value file
descriptor acting as a sort of reference.

e Your process starts out with three open files, STDIN (0),
STDOUT (1), STDERR (2)

e You can create more file descriptors with various system
calls. open() i1s a common one. Returns -1 on error.

-y 12

More File descriptors and system calls

e Once you have a file descriptor

, use syscalls such as

read (), write(), ioctl() to do I/O

e You can close() when you are ¢
e Magic of Linux/UNIX is not just c

one
Isk files, but all devices

act as files and same syscalls wor

k on them.

13

Sockets don’t fit the Abstraction Well

e Just to be difficult though the socket interface does
things slightly differently (you don’t use open() on
/dev/network or ioctl() to set address)

e Some people are still angry about this

e Note until Linux 4.3 on older Linux platforms (x86-
32) there was only a single socket syscall with a de-
multiplexer

-y 14

Socket Syscalls

remember: use man for documents, e.g. man socket

e SOCKET - create a new endpoint

e BIND — associate an address with a socket

e LISTEN — announce willing to accept connections

o ACCEPT — passively establish incoming connection

e CONNECT - actively attempt to establish connection
e SEND - send data

e RECEIVE - receive data
e CLOSE - close connection

-y 15

Writing a Simple Server

16

Opening a socket for listening

/* Open a socket to listen on */

/* AF_INET means an IPv4 connection (others are possible) x*x/
/* SOCK_STREAM means reliable two-way connection (TCP) x/

/* last argument is protocol subset. We leave at zero x/

int socket_fd = socket (AF_INET, SOCK_STREAM, O0);

if (socket_£fd<0) A
fprintf (stderr,"Error opening socket! 7%s\n",
strerror (errno)) ;

17

Setting an Address

e More layer violations

e While in theory generic, we are coding to TCP/IP here

e Address is a 32-bit number that uniquely identifies
system
|IP Address, often written 127.0.0.1 but it's actually just
a 32-bit integer

-y 18

Setting the Port

e Port is how you handle multiple applications on same
machine, based on the “port” it can map back to which
application (the OS has a table)

e On TCP/IP limited to a 16-bit port number (65536)

/Y 19

Network Byte Order

e The address and port are in network byte order, which
is big-endian (stored biggest byte first)

e Most modern machines are little-endian (stored smallest
byte first)

e You will need to convert the address and port to the
proper endianess

e Aside/example on endianess

-y 20

Network Byte Order Conversion

e htonl () will convert a long (32-bit)
host to network order long

e htons() will convert a short (16-bit)
host to network order short

e Can you convert the other way? Yes, there's also
ntohl () and ntohs()

/Y 21

Setting up Address

e memset () to clear memory to zero, be sure to get order
of arguments right!

e C structures and how they work

e Casting, lets us fake pointer type for all types of
connections and cast to right one.

e We're a server and listening for any address

e We use 0.0.0.0 which means to listen on all networks

e No need to explicitly set 0.0.0.0, the zeroing by memset
does it for us

/Y 22

/* for reference, these live in header file x*x/
/* /usr/include/x86_64-1linux-gnu/sys/socket.h etc */
struct in_addr { uint32_t s_addr; };
struct sockaddr_in A
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
+;
/* Set up the server address to listen on */
struct sockaddr_in server_addr;
/* Clear struct, also sets the address to 0.0.0.0 x/
memset (&server_addr ,0,sizeof (struct sockaddr_in));
server_addr .sin_family=AF_INET;

/* Convert the port we want to network byte order (short) x*/

server_addr.sin_port=htons (port);

23

bind () system call

e bind () gives the socket an address, in this case 0.0.0.0
from above
/* Bind to the port x*/
if (bind(socket_fd, (struct sockaddr *) &server_addr,

sizeof (server_addr)) <0) {
fprintf (stderr ,"Error binding! %s\n", strerror(errno));

-y 24

listen() system call

Sets up a data structure to hold pending incoming
connections in case more than one come in at once.

/* Tell the server we want to listen on the port x*/
/* Second argument is backlog, how many pending connections can */
/* build up */

listen(socket_fd,b5);

-y 25

accept () system call

e Blocks waiting for incoming connection

e When comes in, gets *new™ file descriptor (careful)

e You can take this and fork a new thread to handle it
(why would you do that?)

/* Call accept to create a new file descriptor for an incoming */
/* connection. It takes the oldest one off the queue */
/* We’re blocking so it waits here until a connection happens */
client_len=sizeof (client_addr);
new_socket_fd = accept(socket_£fd,

(struct sockaddr *)&client_addr ,&client_len);
if (new_socket_£fd<0) {

Sipaisniti Qaitidic st Sl RoatciclepiEiimou s el St R ol o Qe niopibi:

};

/Y 26

read() system call

Can also use recv() if need extra options.

#define BUFFER_SIZE 1024
char buffer [BUFFER_SIZE];

/* Someone connected! Let’s try to read BUFFER_SIZE-1 bytes x/
memset (buffer ,0,BUFFER_SIZE) ;
n = read(new_socket_fd ,buffer , (BUFFER_SIZE-1));
if (n==0) fprintf(stderr,"Connection to client lost\n\n");
else if (n<0) {
fprintf (stderr,"Error reading from socket %s\n",
strerror (errno)) ;

/* Print the message we received */
printf ("Message from client: Y%s\n",buffer);

-y 21

write() system call

Can also use send () if need extra options.

/* Send a response */
n = write(new_socket_fd,"Got your message, thanks!" ,625);
if (n<0) {
fprintf (stderr,"Error writing. 7s\n",
strerror (errno)) ;

28

close() system call

printf ("Exiting server\n\n");

/* Close the sockets */
close(new_socket_fd);
close(socket_fd);

29

Server Summary

e socket () — tell kernel to create socket

e set up address/port

e bind () — assign address to socket

e listen() — start listening on socket

e accept() — wait for incoming connection, assign file
descriptor

e recv() /read() — get data

e send() /write() — send response

e close() — close connection, close() — close socket

-y 30

HW#1 — Keeping Server Open

e | provide code that does a simple, once-through server
transaction

e What if you want to keep the server open and listening
for multiple transactions of same connection?

e You will need to loop. Where should we loop to?

o After write, loop back to just before the read. Don't
loop to before the accept or else you'll just continually
start new connections, not re-use the current

-y 31

Server Handling Multiple Connections

e High-end servers (like webservers) can handle multiple
active connections at once.

e You can use accept to get file descriptors for multiple
connections

e How can you handle this? Rapidly query each fd over
and over to see if any data has come in? Inefficient.

-y 32

More Optimized Multiple Connections

e poll()/select() let you set up an array of fds and get
notified if any see activity

e alternately, fork() or spawn a thread for each fd and
handle separately

/Y 33

TIME_WAIT

e If you quit and immediately try to restart server might
get error saying socket busy.

e Spec says you should wait a minute for all packets to
clear out. You can wait, or can force with

int on=1; /* we want to turn the feature on */
setsockopt (s, SOL_SOCKET ,SO_REUSEADDR,
(char *)&on,sizeof (on));

-y 34

Client Code

e Ran out of time, see Monday's lecture notes

35

