ECE 435 — Network Engineering
Lecture 3

Vince Weaver
https://web.eece.maine.edu/~vweaver
vincent.weaverOmaine.edu

Barrows 123, Mon 10:00am

28 January 2026


https://web.eece.maine.edu/~vweaver

Announcements

e Homework 1 was posted

e Schedule off a bit due to snow day



TIME_WAIT

e If you quit and immediately try to restart server might
get error saying socket busy.

e Spec says you should wait a minute for all packets to
clear out. You can wait, or can force with

int on=1; /* we want to turn the feature on */
setsockopt (s, SOL_SOCKET ,SO_REUSEADDR,
(char *)&on,sizeof (on));



Client Code

e You'll find it's much more straightforward than the server
code

e Mostly because you don't have to handle the possibility
of multiple simultaneous connections

e Very similar to telnet code of yore



socket() again

/* Open a socket file descriptor x*/

/* AF_INET means an IP network socket, not a local (AF_UNIX) one x*/
/* There are other types you can open too */

/* SOCK_STREAM means reliable two-way byte stream (TCP) x*/

/* last argument is protocol subset. We leave at zero */

socket_fd = socket (AF_INET, SOCK_STREAM, 0);
if (socket_£fd<0) {
fprintf (stderr ,"Error socket: 7s\n'",
strerror (errno) ) ;



Lookup Address by Name

e \We need address of the server we want to connect to
e Note for this example using “localhost”

e This is a special case, 127.0.0.1 (loopback, local
machine) on IPv4.

#define DEFAULT_HOSTNAME "localhost"
struct hostent *server;

/* Look up the server info based on its name */
server=gethostbyname (DEFAULT_HOSTNAME) ;
if (server==NULL) A
fprintf (stderr ,"ERROR! No such host!\n");
exit (0);



gethostbyname() Notes

e Note that gethostbyname () Is deprecated

e TODO: should update this to use getaddrinfo()
Instead

e You can see from above part of the problem. Where is
the memory for holding the server data?

e It lives in the C library, a single copy allocated once, and
it's not thread safe



Set Destination Address / Port

struct sockaddr_in server_addr;

/* clear out the server_addr structure and set some fields x*/
/* Set it to connect to the address and port of our server */
memset (&server_addr ,0,sizeof (server_addr)) ;

/* Copy in the address from the previous name lookup (already netwc
memcpy (server ->h_addr ,&server_addr.sin_addr.s_addr,
server->h_length);

/* port should be in "network byte order" (big-endian) */
/* htons = host to network [byte order] short */
server_addr.sin_port=htons (port);
server_addr.sin_family=AF_INET;



connect system call

/* Call the connect system call to actually connect to server */
if (connect(socket_fd,(struct sockaddr *) &server_addr,
sizeof (server_addr)) < 0) {
fprintf (stderr,"Error connecting! %s\n",
strerror (errno) ) ;



Get Input from Keyboard to Send

An aside on C strings. Remember they need to be NUL
(0) terminated. This code below zeros the whole buffer
and then reads a maximum of size-1 bytes which ensures
that happens.

/* Prompt for a message */
printf ("Please enter a message to send: ");
memset (buffer ,0,BUFFER_SIZE) ;

/* Read message */
fgets(buffer ,BUFFER_SIZE-1,stdin);



Send message to server

e Note, to get the length of a C string use strlen() not
sizeof ()

/* Write to socket using the "write" system call x*/
n = write(socket_fd,buffer ,strlen(buffer));
if (n<0) {
fprintf (stderr,"Error writing socket! 7%s\n",
strerror (errno)) ;

/Y 10



Do we need to NUL Terminate when
sending?

e Do we need to NUL terminate? This depends if our
“protocol’ needs it

e The server should NUL terminate anything it gets though
iIf treating it as a string or bad things can happen

e You can't always trust that the input you get from
the network is properly written (or not intentionally
malicious)



wait for response with read()

This code again zeros the whole buffer and then reads a
maximum of size-1 bytes which ensures NUL termination.
You can also explicitly do a wursertmi-o; after the error check

to be safer

/* Clear buffer and read the response from the server x*/

memset (buffer ,0,BUFFER_SIZE) ;
n = read(socket_fd,buffer ,BUFFER_SIZE-1);

if (n<0) {
fprintf (stderr ,"Error reading socket! %s\n",

strerror (errno)) ;



/* Print the response we got x*/
printf ("Received back from server: %s\n\n",buffer);




/* All finished,
close(socket_fd);

close again

close the socket/file descriptor */

14



Client Summary

socket() — sets up socket

set up address/port

connect() — connects to server
send()/write() — send data
recv()/read() — get data
close() — close socket

15



HW=+#1 Notes

Make the server loop forever until a string comes in.
How do you loop forever?

How do you compare with a string? Can you use ==
Be careful with strcmp ()

Unlike most C functions returns O if match

You might even want to use strncmp ()

e Comment your code!

e Try to fix all compiler warnings!

16



HW #1 notes — Debugging

e strace can be useful when tracking down issues and
showing what syscalls are doing

e netstat on a Linux machine can show what network
connections are active, including ports and addresses

e ss (socket status) is the more modern tool people use
instead of netstat

-y 17



HW #1 notes — Socket Programming

e Finding the “struct sockaddr” can be difficult. even if
you find it under /usr/include it's tricky as it's a struct
that is multiplexed via casting (to handle all possible
socket types). Horrible thing about C.

/Y 18



HW #1 notes — Read/Write Issues

e A lot of this comes down to C, and it treats streams of
bytes and strings as mostly interchangeable, even though
there are a lot of pitfalls with that

e Some people have issues where they are writing 256
bytes (write() will write as many bytes as you said,
even if they are trailing zeros), but only reading 255.
This means the next read Is going to get the last 0
rather than the following write.

e When reading, read(fd,buffer,size); What

-y 19



happens if you read 10 bytes but other side only has
47 Only read 4 (result).

e \What happens read 10 bytes and other side has 127 You
read 10 (result) but to get the rest you need to read
again, otherwise it's there the next time you read. You
can do a while loop.

e Also note that when you write, you should specify how
many bytes you are writing, don't just write the full
BUFFER_SIZE as you'll send all the extraneous data in
the buffer past the part you actually want

e Also be careful as by default read/write are blocking so

-y 20



If there is no data available it will wait forever until some
IS

-y 21



HW #1 notes — Buffer Management

e Why not just malloc() each buffer to the exact size as
needed?

e The famous reply: “Now you have two problems”

e C manual memory management is almost as much of a
security problem as NUL-strings ar

e It's also inefficient. But on modern GHz machines with
GB of RAM maybe that doesn't matter.

-y 22



HW #1 notes — Port Numbers

e Incoming port from the client isn't going to be same as
the listening port on the server.

e The OS will pick a random, high value (usually in the
40000+ range) for outgoing connections

e Also if you see impossible or unlikely port numbers, be
sure you are remembering to use htons() and htonl ()
to swap back from network byte order

/Y 23



Traditional Internet Servers

e Often Client/Server
e Server “daemon”
e Listens on port
o IANA (Internet Assigned Name Authority) “well-
known" ports 0-1023
o Registered (reserved) ports: 1024-49151
o Dynamic/Private 49152-65535
e Start at boot time? On demand? Old days inetd, these
days systemd

-y 24



Server Types

e Concurrent — handle multiple connections at time (forks
or threads)
o Concurrent Connectionless — when need fast

turnaround, low latency DNS, NFS

o Concurrent Connection — widely used. WWW.

e |terative — handles one connection at a time, rest wait
on queue
o lterative Connectionless — common--trivial, short lived
o lterative Connection — high latency

-y 25



Protocols

e What type of protocol should talk?
e Fixed-length binary?
e Free-form ASCII text?

e 7-bit ASCII vs Unicode?

e Encrypted or compressed?
(security issues from compression?)

26



Internet, Pre-Web

e These days if someone says internet, often mean WWW
e What was the world like before the web?
o Mostly Text based (simple, some networks not handle
binary)
o Low-speed, high-latency connections
e Linux machines in 90s came pre-installed with all kinds
of servers running
o e-mail, ftp, usenet, telnet
o chargen / time / motd / fortune

-y 27



o finger / talk / write




What changed?

e Commercial companies allowed on
e Eternal September
e Endless security issues

29



