ECE 435 — Network Engineering
Lecture 5

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 February 2026

https://web.eece.maine.edu/~vweaver

Announcements

o HW+#1 was due

o HW#2 was posted. Write a mini-webserver.

Aside on Modern Web Design

e A lot more involved than the simple HTML from last
time

e Like all things in this class, we often teach stuff from
the 90s that was understandable because modern stuff
Is overly-complicated

o If need to generate web content these days often use
some sort of tool that hides everything

e For example, the “official’ way to create a personal
website at UMaine iIs using a wordpress blog

-y)

e You might also use high-level things like wikis and
git/markdown

More modern website notes

e Have to sit through talks where UMaine website team
says their plans. It makes a 90s web designer sad
o Designed for mobile + mobile browsers first
o Designed for touch, swipe, full-screen menus
o Lots of graphics and animations with minimal actual
content
o Less frequently accessed info removed or hidden behind
firewall (possibly for ADA Title 2 reasons)
e Even further they plan to make website optimized for Al

4

scraping as they think students don't use web browsers
anymore but instead ask Al

Web-servers (Historical)

e Famously netcraft had a list (meme netcraft reports BSD
is dying)

e NCSA was first popular one (free)
License said you had to ship unmodified code, so often
shipped with patches alongside

e Apache (“a patchy” version of NCSA) took over

e Microsoft IIS

e Other companies like Sun/Netscape/SGI (commercial)

Web-servers (Recent)

e nginx (“engine-x")
o Designed to be faster than Apache (Apache has lots
of RAM overhead)
o Solve cl0Ok problem (having 10k concurrent socket
connections at once)
o Now there's the c10M problem
e lighthttpd (“lightly”)

simple web server

e Listen on port 80

e Accept a TCP connection
e Get name of file requested
e Read file from disk

e Return to client

e Release TCP connection

Aside: How could you make this faster?

e Cache things so not limited by disk
(also cache in browser so not limited by network)
e Make server multithreaded

http

e HyperText Transfer Protocol
RFC 2068 (1997), RFC 2616 (1999), RFC 7230 (2016)
e Make ASCII request, get a MIME-like response
e Connect with TCP socket
e Plain text request, followed by text headers
e Expects carriage returns in addition to linefeeds
e Influences from e-mail servers

-y 10

http Commands

e GET filename HTTP/1.1
get file

e HEAD
get header (can check timestamp. why? see if cache up
to date)

o PU
send a file

e POST
append to a file (send form data)

-y 1

e DELETE
remove file (not used much)
e TRACE

debugging
e CONNECT, OPTIONS

12

http three digit status codes

e 1xx — informational — not used much

® 2xx — Success — 200 = page is OK

e 3xx — Redirect — 303 = page moved

e 4xx — Client Error — 403 = forbidden, 404 = not found

e bxx — Server Error — 500 = internal, 503 = try again

-y 13

Example http request from browser

GET / HTTP/1.1

Host: 471-pi3:8080

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/109.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;9=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Upgrade-Insecure-Requests: 1

Selected http request headers (included
after GET)

e Host: server you are requesting
This lets multiple hostnames share one single |IP address

e User-Agent (browser info). Can you lie? Can you leak
info?

e Accept-*: type of documents can accept, compression,
character set

e Authorization: if you need special permissions/login

e Referer [sic] URL that referred to here

-y 15

e Cookie: deals with cookies
Statelessness — how do you remember setting, logins,
shopping cart, etc. “cookies’. Expire. Can be misused.
e |[f-Modified-Since — caching

-y 16

Example http response

HTTP/1.1 200 OK\r\n

Date: Fri, 26 Jan 2024 04:56:25 GMT\r\n

Server: ECE435\r\n

Last-Modified: Sun, 26 Mar 2017 04:31:47 GMT\r\n
Content-Length: 64\r\n

Content-Type: text/html\r\n

\r\n

<html><head><title>Test</title></head>
<body>test</body></html>

17

Selected http response headers

e Content-Encoding,Language,Length, Type

e Last-Modified: helps with caching

e Location: used when redirecting

e Accept-Ranges: partial downloads (downloading a large
file, interrupted, can restart where left off)

e Content-Length: length of file being sent

e Content-Type: type of data

e Date: current date

e Server: Name of webserver (is it secure to do this?)

-y 18

HW#2 Preview

e Can use existing server code, will connect to it with any
web-browser

e Listen on port 8080 (why not 807)

e Once browser connects, read entire request into buffer
(more proper way to dynamically allocate memory?)

e Ignore most of the headers, mostly want to parse the
GET request

e Generate headers for response

e Send header and file back to browser over socket

-y 19

e Handle a few corner cases, like 404 errors

20

Homework #2 — Connecting

e If connecting on same machine, can use localhost
If over network, must use |P address.

e Can find this various ways (ip addr on Linux)

e Be aware depending on how your network is set up
(firewalls, if behind NAT, etc) you might not be able to
connect to your test machine remotely

/Y 21

HW+#2 Hints — Reading Request into Buffer

e First be sure you are getting the incoming header. Print
it or use strace to veritfy.
e Some web-browsers might send really big requests, be
sure getting 1t all
o Use big enough buffer? 4096 bytes? How big?
o How would a “proper” server do this?
malloc(), realloc() if not big enough?
Overkill for this homework. You can try this, but only if
you know what you are doing. Goal of this assignment

-y 22

Is a simple server not perfect server.
o Just use a bigger buffer if necessary and error if you
get bigger, don't waste time chasing pointers/segfaults

/Y 23

HW#2 — Parsing the GET Request

e Search for a string and point to location after it?
o Find a string and point to beginning of it.

char *pointer;
pointer=strstr (haystack ,needle);

o Look for "GET "
Actually points to beginning of GET. How to skip
ahead?

o pointer+=4 is one way. (pointer math, ugh)

o How to get to first space?

o strtok(pointer," ");

-y 24

Will split the string into chunks, put O at end.
o Also can do this manually;

pointer2=pointer;
while (*pointer) {
if (pointer==’ ’) A
*pointer=0;
break;
+
pointer++;

¥
printf ("%s\n",pointer2);

25

Homework #2 — Interpreting the Filename

e Be sure to strip off initial /, and if it's just / return
index.html

e Do you need to handle spaces in the filename?
Thankfully no, URLs can’'t have spaces

/Y 26

HW#2 — Generating Response Headers

e Print to stdout to verify what sending, also can use lynx
/ wget.
e Know how to construct a string on the fly?
o One way is to have empty string, than use strcpy()
first bit in. strcat () additional strings.
o Easier might be sprintf() If you want formatting
you can do things like

sprintf (temp_string,"File size=)d\r\n",filesize);
strcat (out_string,temp_string);

o snprintf () might be a bit safer as you can specify

-y 27

the max length of the string (to avoid overflowing)

o Try not to be too fancy with one gigantic sprintf ()
call as C can evaluate function parameters in arbitrary
orders

/Y 28

HW=+#2 — Calculating Content-length

e How to find size of a file?

e Can read it in, and count. Note: don’t use strlen() for
this as a binary file might have zeros in it

e Might be better to use stat() (man stat.2) need .2
(or man -a) as there's a command line tool called stat

that comes ip first.

#include <sys/stat.h>
struct stat statbuf;

/* use stat() if have filename, fstat() if have file descriptor x*/
result=fstat (input_£fd ,&statbuf);
input_size=statbuf.st_size;

-y 29

HW+#2 — Getting Filetype

e Easiest way Is calculating based on extension

e Take filename, look for . and compare after it

e Can use strstr() again, but think of corner cases
What if multiple dots? What if no dots?

/Y 30

HW+#2 Hints — Sending File Contents

e Reading file into buffer then writing to socket
o | don't recommend this as you have to dynamically
handle different file sizes
o If you do this, don’t use sprintf() with %s to print the
contents. Won't work if 0 in file
e Reading/Writing in chunks
o open()/read()/write()/close

fd=open(filename ,0_RDONLY);
if (£d<0) fprintf(stderr,"Error opening J%s\n",filename);
while (1) {

result=read (fd,buffer ,256) ;

-y 31

if (result<=0) break;
write(network_fd ,buffer,result);

¥

o fopen() /fread/fwrite/fclose (careful!l Buffered!
And maybe need fdopen() to print to file descriptor).
e Be sure to close afterward.

-y 32

HW+#2 Notes — Knowing Request is Done
(partl)

e This probably isn't needed for this assignment, but can
be useful if you re-use code for your project

e When reading in data from a socket, you probably want
to read in the entirety of a request even though it might
be split across multiple reads (so read () in a while(1)
loop)

e You might also want to read all you can and then have
your client or server handle the request. However if

33

the last read() call blocks forever waiting then your
program is stuck waiting and can't accomplish anything
else

e Is there a way to have interactive programs that are also
waiting for socket data?

-y 34

HW+#2 Notes — Knowing Request is Done
(part2)

e Can you just assume each read() matches an exact
write() from the client?

o No: TCP is a byte stream, you can't see packet
boundaries and they might not correspond to the
write() calls on the other side anyway

e Can you infer that there's more data based on the
content being sent?

o Yes, for example if the data read ends in a new-line it

-y 35

could mean the transaction is done

o Your protocol can contain info that lets you know how
long things are (content-length), or have a signal (like
the empty newline in http after headers) that let you
know

e Can you have non-blocking read() calls?

o You can set the fd to be non-blocking

o The recv() call (unlike read() has some extra flags
that can help. On Linux can pass MSG_DONTWAIT
which will not-block and just return an error if no data
Is available

/Y 36

o Note in these cases you have to periodically poll the
socket to check for input which might not be optimal

o You can use poll() or select() to be notified when
a fd has data but that's complex

o You can also possibly set up multiple threads with
pthreads or similar, with one thread handling the socket

/0

-y 37

Homework #2 — Common lIssues

e If browser confused, be sure you aren't sending extra
zeros. strlen() is your friend

e If browser gets some data but then just spins waiting, be
sure your Content-length field is set with the proper size

Note it's the size of file you are sending, does not include
header size.

/Y 38

Homework #2 — Debugging

e A powerful tool is using
wget -S localhost:8080/test.html
which will show you the headers your server iIs sending
and download the file so you can verify the contents.
Note you might need to install the wget tool (easy to
do on Linux, maybe more difficult elsewhere)

e The strace tool can also be useful as it can show you
the bytes being sent by the various syscalls

o If getting segfaults, you might be stuck using gdb

/Y 39

HW+#2 Hints — General C annoyances

e When you use a char pointer to point into a string (as
when using strstr() or strtok() remember what you
have is a pointer, not a copy of the string you're pointing
to. So if the buffer gets freed or re-used your pointer
may suddenly point to something different.

-y 40

