
ECE 435 – Network Engineering
Lecture 5

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 February 2026

https://web.eece.maine.edu/~vweaver


Announcements

• HW#1 was due

• HW#2 was posted. Write a mini-webserver.

1



Aside on Modern Web Design

• A lot more involved than the simple HTML from last

time

• Like all things in this class, we often teach stuff from

the 90s that was understandable because modern stuff

is overly-complicated

• If need to generate web content these days often use

some sort of tool that hides everything

• For example, the “official” way to create a personal

website at UMaine is using a wordpress blog

2



• You might also use high-level things like wikis and

git/markdown

3



More modern website notes

• Have to sit through talks where UMaine website team

says their plans. It makes a 90s web designer sad

◦ Designed for mobile + mobile browsers first

◦ Designed for touch, swipe, full-screen menus

◦ Lots of graphics and animations with minimal actual

content

◦ Less frequently accessed info removed or hidden behind

firewall (possibly for ADA Title 2 reasons)

• Even further they plan to make website optimized for AI

4



scraping as they think students don’t use web browsers

anymore but instead ask AI

5



Web-servers (Historical)

• Famously netcraft had a list (meme netcraft reports BSD

is dying)

• NCSA was first popular one (free)

License said you had to ship unmodified code, so often

shipped with patches alongside

• Apache (“a patchy” version of NCSA) took over

• Microsoft IIS

• Other companies like Sun/Netscape/SGI (commercial)

6



Web-servers (Recent)

• nginx (“engine-x”)

◦ Designed to be faster than Apache (Apache has lots

of RAM overhead)

◦ Solve c10k problem (having 10k concurrent socket

connections at once)

◦ Now there’s the c10M problem

• lighthttpd (“lightly”)

7



simple web server

• Listen on port 80

• Accept a TCP connection

• Get name of file requested

• Read file from disk

• Return to client

• Release TCP connection

8



Aside: How could you make this faster?

• Cache things so not limited by disk

(also cache in browser so not limited by network)

• Make server multithreaded

9



http

• HyperText Transfer Protocol

RFC 2068 (1997), RFC 2616 (1999), RFC 7230 (2016)

• Make ASCII request, get a MIME-like response

• Connect with TCP socket

• Plain text request, followed by text headers

• Expects carriage returns in addition to linefeeds

• Influences from e-mail servers

10



http Commands

• GET filename HTTP/1.1

get file

• HEAD

get header (can check timestamp. why? see if cache up

to date)

• PUT

send a file

• POST

append to a file (send form data)

11



• DELETE

remove file (not used much)

• TRACE

debugging

• CONNECT, OPTIONS

12



http three digit status codes

• 1xx – informational – not used much

• 2xx – Success – 200 = page is OK

• 3xx – Redirect – 303 = page moved

• 4xx – Client Error – 403 = forbidden, 404 = not found

• 5xx – Server Error – 500 = internal, 503 = try again

13



Example http request from browser

GET / HTTP/1.1

Host: 471-pi3:8080

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/109.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Upgrade-Insecure-Requests: 1

14



Selected http request headers (included
after GET)

• Host: server you are requesting

This lets multiple hostnames share one single IP address

• User-Agent (browser info). Can you lie? Can you leak

info?

• Accept-*: type of documents can accept, compression,

character set

• Authorization: if you need special permissions/login

• Referer [sic] URL that referred to here

15



• Cookie: deals with cookies

Statelessness – how do you remember setting, logins,

shopping cart, etc. “cookies”. Expire. Can be misused.

• If-Modified-Since – caching

16



Example http response

HTTP/1.1 200 OK\r\n

Date: Fri, 26 Jan 2024 04:56:25 GMT\r\n

Server: ECE435\r\n

Last-Modified: Sun, 26 Mar 2017 04:31:47 GMT\r\n

Content-Length: 64\r\n

Content-Type: text/html\r\n

\r\n

<html><head><title>Test</title></head>

<body>test</body></html>

17



Selected http response headers

• Content-Encoding,Language,Length,Type

• Last-Modified: helps with caching

• Location: used when redirecting

• Accept-Ranges: partial downloads (downloading a large

file, interrupted, can restart where left off)

• Content-Length: length of file being sent

• Content-Type: type of data

• Date: current date

• Server: Name of webserver (is it secure to do this?)

18



HW#2 Preview

• Can use existing server code, will connect to it with any

web-browser

• Listen on port 8080 (why not 80?)

• Once browser connects, read entire request into buffer

(more proper way to dynamically allocate memory?)

• Ignore most of the headers, mostly want to parse the

GET request

• Generate headers for response

• Send header and file back to browser over socket

19



• Handle a few corner cases, like 404 errors

20



Homework #2 – Connecting

• If connecting on same machine, can use localhost

if over network, must use IP address.

• Can find this various ways (ip addr on Linux)

• Be aware depending on how your network is set up

(firewalls, if behind NAT, etc) you might not be able to

connect to your test machine remotely

21



HW#2 Hints – Reading Request into Buffer

• First be sure you are getting the incoming header. Print

it or use strace to verify.

• Some web-browsers might send really big requests, be

sure getting it all

◦ Use big enough buffer? 4096 bytes? How big?

◦ How would a “proper” server do this?

malloc(), realloc() if not big enough?

Overkill for this homework. You can try this, but only if

you know what you are doing. Goal of this assignment

22



is a simple server not perfect server.

◦ Just use a bigger buffer if necessary and error if you

get bigger, don’t waste time chasing pointers/segfaults

23



HW#2 – Parsing the GET Request

• Search for a string and point to location after it?

◦ Find a string and point to beginning of it.
char *pointer;

pointer=strstr(haystack ,needle );

◦ Look for "GET "

Actually points to beginning of GET. How to skip

ahead?

◦ pointer+=4 is one way. (pointer math, ugh)

◦ How to get to first space?

◦ strtok(pointer," ");

24



Will split the string into chunks, put 0 at end.

◦ Also can do this manually;
pointer2=pointer;

while (* pointer) {

if (pointer ==’ ’) {

*pointer =0;

break;

}

pointer ++;

}

printf("%s\n",pointer2 );

25



Homework #2 – Interpreting the Filename

• Be sure to strip off initial /, and if it’s just / return

index.html

• Do you need to handle spaces in the filename?

Thankfully no, URLs can’t have spaces

26



HW#2 – Generating Response Headers

• Print to stdout to verify what sending, also can use lynx

/ wget.

• Know how to construct a string on the fly?

◦ One way is to have empty string, than use strcpy()

first bit in. strcat() additional strings.

◦ Easier might be sprintf() If you want formatting

you can do things like
sprintf(temp_string ,"File size=%d\r\n",filesize );

strcat(out_string ,temp_string );

◦ snprintf() might be a bit safer as you can specify

27



the max length of the string (to avoid overflowing)

◦ Try not to be too fancy with one gigantic sprintf()

call as C can evaluate function parameters in arbitrary

orders

28



HW#2 – Calculating Content-length

• How to find size of a file?

• Can read it in, and count. Note: don’t use strlen() for

this as a binary file might have zeros in it

• Might be better to use stat() (man stat.2) need .2

(or man -a) as there’s a command line tool called stat

that comes ip first.
#include <sys/stat.h>

struct stat statbuf;

/* use stat() if have filename , fstat() if have file descriptor */

result=fstat(input_fd ,& statbuf );

input_size=statbuf.st_size;

29



HW#2 – Getting Filetype

• Easiest way is calculating based on extension

• Take filename, look for . and compare after it

• Can use strstr() again, but think of corner cases

What if multiple dots? What if no dots?

30



HW#2 Hints – Sending File Contents

• Reading file into buffer then writing to socket

◦ I don’t recommend this as you have to dynamically

handle different file sizes

◦ If you do this, don’t use sprintf() with %s to print the

contents. Won’t work if 0 in file

• Reading/Writing in chunks

◦ open()/read()/write()/close
fd=open(filename ,O_RDONLY );

if (fd <0) fprintf(stderr ,"Error opening %s\n",filename );

while (1) {

result=read(fd ,buffer ,256);

31



if (result <=0) break;

write(network_fd ,buffer ,result );

}

◦ fopen()/fread/fwrite/fclose (careful! Buffered!

And maybe need fdopen() to print to file descriptor).

• Be sure to close afterward.

32



HW#2 Notes – Knowing Request is Done
(part1)

• This probably isn’t needed for this assignment, but can

be useful if you re-use code for your project

• When reading in data from a socket, you probably want

to read in the entirety of a request even though it might

be split across multiple reads (so read() in a while(1)

loop)

• You might also want to read all you can and then have

your client or server handle the request. However if

33



the last read() call blocks forever waiting then your

program is stuck waiting and can’t accomplish anything

else

• Is there a way to have interactive programs that are also

waiting for socket data?

34



HW#2 Notes – Knowing Request is Done
(part2)

• Can you just assume each read() matches an exact

write() from the client?

◦ No: TCP is a byte stream, you can’t see packet

boundaries and they might not correspond to the

write() calls on the other side anyway

• Can you infer that there’s more data based on the

content being sent?

◦ Yes, for example if the data read ends in a new-line it

35



could mean the transaction is done

◦ Your protocol can contain info that lets you know how

long things are (content-length), or have a signal (like

the empty newline in http after headers) that let you

know

• Can you have non-blocking read() calls?

◦ You can set the fd to be non-blocking

◦ The recv() call (unlike read() has some extra flags

that can help. On Linux can pass MSG DONTWAIT

which will not-block and just return an error if no data

is available

36



◦ Note in these cases you have to periodically poll the

socket to check for input which might not be optimal

◦ You can use poll() or select() to be notified when

a fd has data but that’s complex

◦ You can also possibly set up multiple threads with

pthreads or similar, with one thread handling the socket

I/O

37



Homework #2 – Common Issues

• If browser confused, be sure you aren’t sending extra

zeros. strlen() is your friend

• If browser gets some data but then just spins waiting, be

sure your Content-length field is set with the proper size

Note it’s the size of file you are sending, does not include

header size.

38



Homework #2 – Debugging

• A powerful tool is using

wget -S localhost:8080/test.html

which will show you the headers your server is sending

and download the file so you can verify the contents.

Note you might need to install the wget tool (easy to

do on Linux, maybe more difficult elsewhere)

• The strace tool can also be useful as it can show you

the bytes being sent by the various syscalls

• If getting segfaults, you might be stuck using gdb

39



HW#2 Hints – General C annoyances

• When you use a char pointer to point into a string (as

when using strstr() or strtok() remember what you

have is a pointer, not a copy of the string you’re pointing

to. So if the buffer gets freed or re-used your pointer

may suddenly point to something different.

40


