ECE 471 — Embedded Systems
Lecture 15

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 October 2023


https://web.eece.maine.edu/~vweaver

Announcements

e HW+#5 was posted
If you need an i2c display let me know

e Midterm is a week from Friday, the 13th

e The Pi5 will reportedly have PIO (parallel 1/O) and
cortex-M3 chip you can program



i2c followup — Reserved Addresses

Address R/W Bit | Description

000 0000 | O General call address

000 0000 | 1 START byte (helps make polling cheaper)
000 0001 | X CBUS address

000 0010 | X Reserved for different bus format

000 0011 | X Reserved for future purposes

000 01XX | X Hs-mode master code

111 10XX | X 10-bit slave addressing

111 11XX | X Reserved for future purposes

10-bit addresses work by using special address above with
first 2 bits + R/W, then sending an additional byte with
the lower 8 bits.

-y 2



System Booting



Boot Firmware

Provides booting, configuration/setup, sometimes provides
rudimentary hardware access routines.

Kernel developers like to complain about firmware authors.
Often mysterious bugs, only tested under Windows, etc.

e BIOS — legacy 16-bit interface on x86 machines

e UEFI — Unified Extensible Firmware Interface
1a64, x86, ARM. From Intel. Replaces BIOS

e OpenFirmware — old macs, SPARC

o LinuxBIOS

-y 4



Bootloaders

e Firmware doesn’t usually directly load Operating System

e Bootloader (relatively simple code, just smart enough to
load OS and jump to it) is loaded first

e Bootloader is often on a very simple filesystem (such as
FAT) as the code has to be simple (possibly even written
in assembly language)

e Bootloader is often just complex enough to load OS
kernel from disk/network/etc and jump to it

-y 5



Raspberry Pi Booting

e Unusual — GPU handles it

e Small amount of firmware on SoC

e ARM chip brought up inactive (in reset)
e Videocore loads first stage from ROM



Raspberry Pi Booting (pre pi4)

e Videocore reads bootcode.bin from FAT partition on
SD card into L2 cache.

Its actually a RTOS (real time OS) in own right
hreadX"” (50k)

e This runs on videocard, enables SDRAM, then loads
start.elf (3M)

e T his Initializes things, the loads and boots Linux onto
ARM chip kernel/kernel7/kernel7]l/kernel8. img.
(also reads some config files there first) (4M)

-y g



Pi4 booting

@ nhttps://www. raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

e SPI EEPROM holds equivalent of bootcode.bin, no
longer read from partition

e Why? SDRAM, PCle USB, etc are more complex

e Supports network and USB booting which is much more
complex than just loading a file off of SD card


https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

Typical ARM booting

e [he UBoot bootloader is common
e ARM chip runs first-stage boot loader (often MLO)

e Then loads second-stage (uboot)



Disk Partitions

e Way to virtually split up disk.

e DOS GPT - old partition type, in MBR. Start/stop
sectors, type

e Types: Linux, swap, DOS, etc

e GPT had 4 primary and then more secondary

e Lots of different schemes (each OS has own, Linux
supports many). UEFI more flexible, greater than 2TB

e \Why partition disks?
o Different filesystems; bootloader can only read FAT?

/Y 10



o Dual/Triple boot (multiple operating systems)
o Old: filesystems can’'t handle disk size

11



Why a FAT Partition?

e /boot on Pi is a legacy (40+ years old) File-Allocation
Table (FAT) filesystem

e Why FAT? (Simple, Low-memory, Works on most
machines, In theory no patents despite MS's best
attempts (see exfat))

e The boot firmware (burned into the CPU) is smart
enough to mount a FAT partition

/Y 12



Boot Methods

e Floppy
e Hard-drive (PATA/SATA/SCSI/RAID)
e CD/DVD

e USB

e Network (PXE/tftp)

e Flash, SD card

e [ape

e Networked tape

e Paper tape? Front-panel switches?

-y 13



Device Detection

e x80, well-known standardized platform. What windows
needs to boot. Can auto-discover things like PCI bus,
USB. Linux kernel on x86 can boot on most.

e Old ARM, hard-coded. So a rasp-pi kernel only could
boot on Rasp-pi. Lots of pound-defined and hard-coded
hw info.

e New way, device tree. A blob that describes the
hardware. Pass it in with boot loader, and kernel can use

-y 14



it to determine what hardware is available. So instead
of Debian needing to provide 100 kernels, instead just
1 kernel and 100 device tree files that one is chosen at
install time.

e Does mean that updating to a new kernel can be a pain.

-y 15



Detecting Devices

There are many ways to detect devices

e Guessing/Probing — can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data
sent to It

e Standards — always knowing that, say, VGA is at address
0xa0000. PCs get by with defacto standards

e Enumerable hardware — busses like USB and PCI allow
you to query hardware to find out what it is and where

16



It 1s located

e Hard-coding — have a separate kernel for each possible
board, with the locations of devices hard-coded in. Not
very maintainable in the long run.

e Device Trees — see next slide

-y 17



Devicetree

e Traditional Linux ARM support a bit of a copy-paste and
+#ifdef mess

e Each new platform was a compile option. No common
code; kernel for pandaboard not run on beagleboard not
run on gumstix, etc.

e Work underway to be more like x86 (where until recently
due to PC standards a kernel would boot on any x86)

e A “devicetree” passes in enough config info to the kernel

18



to describe all the hardware available. Thus kernel much
more generic

e ARM servers use ACPI for same thing (from x86) mostly
because of Microsoft

/Y 19



