
ECE 471 – Embedded Systems
Lecture 24

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

30 October 2023

https://web.eece.maine.edu/~vweaver

Announcements

• HW#8 was posted

• Remember project ideas due soon

1

HW#8 – C string review

• String manipulation is famously horrible in C.

• There are many ways to get the ”YES” and ”t=24125”

values out of the text file for HW#8.

• Any way you choose is fine.

2

C String Review

• This is tricky to get right

• It’s relevant to Computer Security, the next topic we will

cover

3

What is a C string? – essentially a hack

• A NUL (zero) (note: not NULL) terminated array

• H e l l o \0
• Note this is really:

0x48 0x65 0x6c 0x6c 0x6f 0x00

• Note in C, arrays are essentially just pointers

• Can statically declare: (compiler puts the 0 on end for

you)

char s t r i n g 1 [6]=” He l l o ” ;

cha r s t r i n g 1 []=” He l l o ” ; // a u t o s i z e

4

char ∗ s t r i n g 2=”He l l o ” ;

5

C String Review

• Many issues with array of bytes vs string, especially

in other languages. Complicated if Unicode or UTF8.

Windows / java and wchar (16-bit chars)

• You can use either pointer or array access to get a value

(string[0] is the same as *string)

• Note that double quotes indicate a string, while single

quotes indicate a single character

6

Upsides of C strings

• Fast and simple to deal with in assembly language

• Can quickly make short and cryptic functions to

manipulate them

• ???

7

Downsides of C strings

• No way to tell the maximum size from the pointer

• Can only find out current size of string by iterating to

find end

• The C library has a lot of helper functions, many of

which are flawed in deep ways

8

Other String Implementations

• Pascal-style strings, first byte is the length

◦ Always know length, no need to strlen()

◦ Maximum size (if 8-bit than max 256 chars)

• Higher level / object oriented languages (python, C++?)

still have some sort of array of chars inside, but wrap it

with extra info to provide safer access to things

9

C string pitfalls – Writing off the End

• What happens when web form on your device’s web

interface asking “name” and you allocate 64 bytes but

don’t check, and someone types 4096 bytes

• What’s the worst case?

• Crash your program?

• Corrupt data?

• Complete system compromise?

10

Can the C-library string functions save you?

• The standard strcpy(char *dst, char *src)

◦ will happily go off the end if destination smaller than

source

• strncpy(char *dst, char *src, int size)

◦ added destination-size parameter, also pads dest with

0

◦ NOTE: will leave off (!) the NUL terminator if not fit

• strlcpy(char *dst, char *src, int size)

◦ always terminates destination

11

◦ if destination full, you lose a byte as it is silently

truncated and last byte made NUL

◦ No error is indicated if this happens

◦ why a problem? example: say want to remove

file.txt but got got truncated to file.txt instead?

◦ https://lwn.net/Articles/507319/

12

https://lwn.net/Articles/507319/

HW#8 Challenge – Reading from File

13

Method One – File I/O Using fscanf()

• The “stream” file interface in C lets you used buffered

I/O and is slightly higher level than open()/close()

• Open a file with: FILE *fff;

fff=fopen("filename","r");

Check for errors! fff==NULL if it fails to open

• close a file with fclose(fff);

• you can read a string using fscanf(fff,"%s",string);

14

notes on scanf() functions

• printf() like interface

char s t r i n g [2 5 6] ;

i n t x ;

s c a n f (”%d %s ”,&x , s t r i n g) ;

◦ Types to read like in printf, d for integer, s for string

◦ Useful trick, %*s the asterisk means read but don’t

output, useful for skipping things

◦ Result goes to a pointer. Note a string is already a

pointer so no need for an ampersand

15

• scanf() reads from standard input (keyboard)

• fscanf() reads from file

• sscanf() reads from a string

16

Method Two – Read Entire File into RAM

• There are multiple ways to read files into a string in C

Assume char string[1024];

◦ fd=open("filename",RD ONLY);

result=read(fd,string,1023); close(fd);

◦ FILE *fff; fff=fopen("filename","r");

fread(buffer,size,count,fff); fclose(fff)

• If you are treating things as a string, be sure to NUL-

terminate string[result]=0;

17

Hardcoded sizes

• In the last example I was being lazy and hardcoded a 1k

size instead

Can you make that dynamic?

• Use stat() to get filesize, then use malloc() to allocate

space? Be sure to free() when done

18

Other ways to access file contents

• Advanced: use mmap()

• You can also use fgets(buffer,size,fff); to bring

in one line at a time

• What about gets()? Dropped from C libraries as being

too unsafe! No size so just writes forever

19

Finding a location / substring in a larger
string

• If you trust the Linux kernel developers to keep a “stable

ABI” you can assume the temperature will always be

a fixed offset and hard code it. This can be a bit

dangerous.

• You can use the scanf() series of functions to parse the

string (either fscanf() directly, or sscanf() on the string)

One helpful hint, putting a ‘*’ in a conversion (like %*s

tells scanf to read in the value but ignore it.

20

• You can use the strstr() search for substring

C-library function to search for substrings, i.e.

strstr(string,"NO"); (haystack, needle)

• Maybe in conjunction with strtok()?

• You can manually parse the array.

Using array syntax, something like:

i=0; while(string[i]!=0) {
if (string[i]==’t’) break; i++ }
Using pointer syntax, something like:

char *a; a=string; while(*a!=0) {
if (*a==’t’) break; a++; }

21

Pointing into a string

• If you searched for ”t=” you might now have a pointer

a to something like ”t=12345”. To point to 12345 you

can just add 2 to the string pointer.

• printf("%s\n",string+2);
• printf("%s\n",&string[2]);

22

Converting string to decimal or floating
point

• atoi(char *string) converts string to integer. What

happens on error?

• strtol() will give you an error but is more complex to

use

• atof() and strtod() will do floating point

23

Comparing strings

• Can you just use ==? NO!

• Be careful using strcmp() (or even better, strncmp()

they have unusual return value

less than, 0 or greater than depending. 0 means match

So you want something like

if (!strcmp(a,b)) do something();

24

