
ECE 471 – Embedded Systems
Lecture 1

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

3 September 2013



Introduction

• Distribute and go over syllabus

1



Embedded Systems

2



What is an embedded system?

• Embedded. Inside of something.

Traditionally fixed-purpose.

Why? You can optimize. For cost, for power, for size,

for reliability, for performance.

• Resource constrained. Small CPU, Memory, I/O,

Bandwidth

• Often real-time constraints.

3



What are some embedded systems?

• Cellphone (though lines blurring, general purpose)

• Vehicles (Cars/Airplanes)

• Appliances (TVs, Washers), Medical Equipment

• Space Probes

4



What Size CPU/Memory?

• Anything from 8-bit/tiny RAM to 32-bit 1GHz 1GB

• Performance has greatly improved over the years. ARM

Cortex A9 in an iPad2 scores same on Linpack as an

early Cray supercomputer

5



Pushing the Limits

6



What Processors Commonly Used?

As reported by IDC at the SMART Technology

conference in San Francisco for 2011

• ARM 71%

• MIPS 11%

• Other 9%

• x86 8% (at least Intel’s desperately trying)

• Power 2%

7



We’ll Mostly Use ARM in this Class

• Widely used

• You’ll see if it you move to industry

• Other classes in ECE are moving to it

8



Brief Computer Architecture Review

• Embedded processors used to use simple processors

• Over the year, due to Moore’s Law, more complex

processors have entered the embedded space

• This involves many tradeoffs. A lot of processors

trade complexity for speed, and often become non-

deterministic. This impacts real-time operation, as you

cannot predict how long an operation will take.

• Embedded system designers thus have to learn more

9



about the underlying hardware.

10



Instruction Set Architecture

• RISC: Reduced Instruction Set Computer

Small set of instructions to make processor design

simpler. Usually fixed-length instructions, load/store

• CISC: Complex Instruction Set Computer

Wide ranging complicated instructions; have complicated

CPU decode circuitry. Often variable length instructions.

Often allow operating on memory directly.

• VLIW: Very Long Instruction Word

11



Instructions come in long “bundles”, often 3 at a time.

Cannot have dependencies; may have to fill with “nops”.

Allows compiler to exploit inherit parallelism in code

(most modern CPUs do this in hardware instead, VLIW

puts this complexity in software).

12



CISC/RISC/VLIW Examples

• MIPS is RISC: roughly only 40 integer instructions ,

(more if you include FP)

• x86 is CISC: hundreds of complicated instructions,

including ones that access memory, auto-increment

registers, have complex shift/add address modes

• Hybrid: ARM or Power started out RISC but have

accumulated more complicated instructions over time

13



• x86, while CISC externally, internally decodes to a RISC-

like code before executing

14



ISA / Code Density

• ISA affects code density, which can be important in

embedded systems

• Dense code takes up less space in caches (good for small

systems), less space in storage (smaller/cheaper disk or

flash)

• Dense code often also is more complex to decode, so

may lead to larger/hotter/power-drawing processors.

15



Bit-size

• 8-bit, 16-bit, 32-bit, 64-bit

• Generally refers to register size, but also is tied to

memory addressing size

• Endianess can be an issue

16



Multiprocessor

• Moore’s law no longer fights for frequency, instead you

get more cores per CPU

• Multi-core systems are starting to appear in embedded

systems

• SMP/CMP/SMT

17



Processor Type

• In-order Processors – Old 8-bits

• Super-scalar – multiple instructions “in-flight” at once.

• Multi-issue – duplicated functional units and multiple

instructions can execute simultaneously

Original Pentium

• Out-of-order – instructions can execute when read, even

out of order, with correct program behavior guaranteed

18



at retirement

Pentium Pro and newer, Arm Cortex A8 and newer

19



Caches

• Fast memory close to the processor. If your data/code

is in cache it will execute up to 100x faster. If it doesn’t

fit in cache, goes slowly.

• Exploits temporal (nearby in time of access) and spatial

(nearby in memory location) locality

• Usually values are automatically moved into cache, you

don’t have to do anything manually.

• Memory Wall – Memory speeds have not kept up with

20



CPU speeds over the years.

• L1/L2/L3

• Instruction/Data/Unified

• Coherency

21


