
ECE 471 – Embedded Systems
Lecture 7

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

24 September 2013

Announcements

• HW#2 is delayed, working on hardware

• Read Chapter 11 in Textbook

1

HW Review

• The “state of the art” space-rated processor is the

Rad750, a 32-bit PowerPC running at 133MHz. It uses

10 watts of power and costs $200,000.

• Great things done with 16-bits and less. Voyager probes.

• Apollo Computer. Interesting book on their Block-1

computer. The story goes the ROM was hand-sewn by

old ladies.

• C-compilers may produce bloated executables now, but

2

back in 1970 C was designed to run on machines we’d

consider small 16-bit embedded systems today.

3

ARM Instruction Set Encodings

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

• THUMB-EE – some extensions for running in JIT

runtime

• AARCH64 – 64 bit. Just released

4

Code Density

• Overview from my ll ICCD’09 paper

• Show code density for variety of architectures, recently

added Thumb-2 support.

• Shows overall size, though not a fair comparison due to

operating system differences on non-Linux machines

5

Code Density – overall

ia
64

al
ph

a

R
iS

C

pa
ris

c

sp
ar

c

m
bl
az

e
m

ip
s

m
88

k
ar

m
pp

c

65
02

s3
90

x8
6_

64 va
x

sh
3

m
68

k
i3
86

th
um

b

th
um

b-
2

av
r3

2

cr
is
v3

2
z8

0

pd
p-

11
80

86
0

512

1024

1536

2048

2560

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

6

lzss compression

• Printing routine uses lzss compression

• Might be more representative of potential code density

7

Code Density – lzss

R
iS

C
ia
64

al
ph

a
m

ip
s

pa
ris

c

sp
ar

c

m
bl
az

e
65

02

m
88

k
s3

90 ar
m

pp
c

pd
p-

11 va
x

z8
0

m
68

k

av
r3

2

th
um

b

th
um

b-
2

sh
3

x8
6_

64

cr
is
v3

2
i3
86

80
86

0

64

128

192

256

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

8

THUMB

• Most instructions length 16-bit (a few 32-bit)

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• No prefix/conditional execution

• Only two arguments to opcodes

9

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

• Limited addressing modes: [rn,rm], [rn,#imm],

[pc|sp,#imm]

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

10

• new push/pop instructions (subset of ldm/stm), neg (to

negate), asr,lsl,lsr,ror, bic (logic bit clear)

11

THUMB/ARM interworking

• See print string armthumb.s

• BX/BLX instruction to switch mode.

If target is a label, always switchmode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can also switch modes with ldrm, ldm, or pop with PC

as a destination

(on armv7 can enter with ALU op with PC destination)

12

• Can use .thumb directive, .arm for 32-bit.

13

THUMB-2

• Extension of THUMB to have both 16-bit and 32-bit

instructions

• 32-bit instructions not standard 32-bit ARM instructions.

It’s a new encoding that allows an instruction to be 32-

bit if needed.

• Most 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

14

• rsc (reverse subtract with carry) removed

• Shifts in ALU instructions are by constant, cannot shift

by register like in arm32

• THUMB-2 code can assemble to either ARM-32 or

THUMB2

The assembly language is compatible.

Common code can be written and output changed at

time of assembly.

• Instructions have “wide” and “narrow” encoding.

15

Can force this (add.w vs add.n).

• Need to properly indicate “s” (set flags).

Regular THUMB this is assumed.

16

THUMB-2 Coding

• See test thumb2.s

• Use .syntax unified at beginning of code

• Use .arm or .thumb to specify mode

17

New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movt – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz – compare and branch if zero; only jumps forward

18

Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

0100 -- 1bcdedfh 00000000 00000000 00000000

...

1111 -- 00000000 00000000 00000001 bcdefgh0

19

Compiler

• gcc -S hello world.c

On gumstix board creates arm32

• gcc -S -march=armv5t -mthumb hello world.c

Creates THUMB

• -mthumb -march=armv7-a Creates THUMB2

20

IT (If/Then) Instruction

• Allows limited conditional execution in THUMB-2 mode.

• The directive is optional (and ignored in ARM32)

the assembler can (in-theory) auto-generate the IT

instruction

• Limit of 4 instructions

21

Example Code

it cc

addcc r1,r2

itete cc

addcc r1,r2

addcs r1,r2

addcc r1,r2

addcs r1,r2

22

ll Example Code

ittt cs @ If CS Then Next plus CS for next 3

discrete_char:

ldrbcs r4,[r3] @ load a byte

addcs r3,#1 @ increment pointer

movcs r6,#1 @ we set r6 to one so byte

bcs.n store_byte @ and store it

offset_length:

23

