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Announcements

• Project groups and topics!
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HW#4 – Specifications

• For the HW the major spec is “it works”. There may be

other concerns in the real world.

• Speed

• Size

• Development Time

• Portability/Maintainability
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• Resources (how small the CPU? Floating point library?

Stripped-down C library?)
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HW#4

• Not compile?

• Give wrong result because still testing code

• “LCD” instead of “LED”

• Wrong value... multiply by (9/5) in conversion routine

• I wrote spec poorly. -1.0 to 0.0. Undefined values in

cracks.
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HW#4

• How did I write it?

• int temp=temp*10.0;

• digit[0]=int temp/100;

• int temp-=(int temp/100)*100;

• digit[1]=int temp/10;

• digit[2]=int temp%10;
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• lookup table
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HW#4

• Other ways?

• sprintf()

• ??

• Fixed point? How would you do it in assembly?
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Notes on Process Technology

• 65nm – 2006

p4 to core2, IBM Cell

1.0v, High-K dielectric, gate thickness a few atoms

193/248nm light (UV)

• 45nm – 2008

core2 to nehalem

large lenses, double patterning, high-k

• 32nm – 2010
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sandybridge to westmere

immersion lithography

• 22nm – 2012 ivybridge, haswell

oxide only 0.5nm (two silicon atoms)

fin-fets

• 14nm and smaller – ??

Extreme UV (13.5nm light, hard-vacuum required)?

Electron beam?
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Notes on Process Technology

• TI-OMAP cell phone processor (more or less discontinued

by TI, big layoffs in 2012)

Beagle Board and Gumstix OMAP35?? – 65nm

• OMAP4460 (Pandaboard) 45nm

• Cortex A15 28nm

• Rasp-pi BCM2835 – 45nm?
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CPU Power and Energy

• Became a trendy thing to research in 1999-2002

• Before that usually concern was with performance.

• These days energy results are often reported as a core

part of any architectural proposal, not as a separate

issue.

• The results discussed here are academic and may or may

not be implemented in actual chips.
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AMD Bulldozer Die Shot

Note which structures are big, using static power.
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CPU Energy Breakdown

From Fan, Tang, Huan, Gao (ISLPED’05), Chinese Godson

MIPS CPU

• Cache 36%

• TLB 13%

• FALU 10%

• ROQueue 7%

• FMUL 6%
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• Float reg 5%

• Gen reg 5%

• MUL 2%

• MCUControl 2%

• ALU 1%

• Other 13%
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Thermal Concerns Too

Power density exceed hot plate, approaching rocket

nozzle
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Methodologies Used in These Papers

It varies, but many of these are from simulations

(sometimes validated). Anything from SPICE to “cycle-

accurate” simulators.
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Clock Generation

• Driving high-frequency load against capacitance, trying

to keep whole chip in sync.

• Extreme Case: Alpha 21264 H-tree, 32% of power?

• Half-frequency clocks (on both edge, so clock run half

as fast) (Mudge 2001)

• Asynchronous

• Locally Asynchronous (Divide to multiple clock domains)
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Cache Power and Energy

Large area, low-hanging fruit
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Decay Caches

• Kaxiras, Ho, Martinosi (ISCA 2001)

• Turn off cache lines not being used to reduce leakage

• DRAM cache with no refresh

• Decayed values can be re-fetched from memory.

Tradeoff.

19



Drowsy Caches

• Flautner, Kim, Martin, Blaauw, Mudge. ISCA 2002.

• Move cold cache lines into “drowsy” mode.

Lower power enough to hold state, not enough to lose

contents. Reduce leakage. Better than decay as not lose

data.
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Adaptive Caches

• Albonesi (Micro 1999). Manually turn off ways in cache

with an instruction.

• Size the caches
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Cache Compression

• Dynamic zero compression for cache energy reduction

(L Villa, M Zhang, K Asanović. Micro 2001).

• Cache Compression (“sign compression” – top bits)

Energy savings 20% (simulated) (Kim, Austin, Mudge

WMPI 2002)
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Banking and Filtering

• Filter cache, banking (only have half of cache active)

(Mudge 2001)

• Slowing Down Cache Hits, Banked Data Cache. (Huang,

Renau, Yoo, and Torrellas. Micro 2000.)

• Vertical Banking, Horizontal Banking (Su and Despain,

ISLPED 1995).
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Code Scheduling

• Can Schedule code for lower power.

• Better cache rates lower power. performance/power can

go hand in hand. (Kandemir, Vijaykrishnan, Irwin)
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Branch Predictors

• Parikh, Skadron, Zhang, Barcella, Stan

• 4 concerns:

1. Accuracy. Not affect power, but performance

2. Configuration (may affect power)

3. Number of lookups

4. Number of updates

• Tradeoff power vs time.
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• brpred can be size of small cache, 10% of power

• Can use banking to mitigate
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Branch Predictors

• can watch icache, not activate predictor if nobranches

• Pipeline gating, keep track of each predicted branch

confidence. If confidence hits certain threshold, stop

speculating. Show this may or may not be good.

• Integer code, large predictors good

• FP, tight loops, predictors not as important.
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Branch Predictor Evaluation

• (Strasser, 1999). Simulation, small branch predictor can

help energy.

• (Co, Weikle, Skadron) Formula for break even point.

Leakage matters, what brpred hides is stall cycles.

• SEPAS: A Highly Accurate Energy-Efficient Branch

Predictor (Baniasadi, Moshovos. ISLPED 2004).

Once a branch prediction reaches steady state (unlikely

to change) stop accessing/updating predictor, saving
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energy.

• Low Power/Area Branch Prediction Using Complementary

Branch Predictors (Sendag, Yi, Chuang, Lija. IPDPS

2008)

Complementary Branch Predictor to handle the tough

cases.
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TLB Energy

30



TLB Optimization – Assume in Same Page

• (Kadayif, Sivasubramaniam, Kandemir, Kandiraju, Chen.

TODAES 2005).

Don’t access TLB if not necessary. Compare to last

access (assume stay in same page) Circuit improvements

• (Kadayif,Sivasubramaniam, Kandemir, Kandiraju, Chen.

Micro 2002)

Cache page value.
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TLB Optimization – Use Virtual Caches

• (Ekman and Stenström, ISLPED 2002) Use virt address

cache. Less TLB energy, more snoop energy. TLB keeps

track of shared pages.
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TLB Optimization – Reconfiguring

• (Basu, Hill, Swift. ISCA 2012) Have the OS select if

memory region physical or virtual cached.

• (Delaluz, Kandemir, Sivasubramaniam, Irwin,

Vijaykrishnan. ICCD 2013) Reducing dTLB Energy

Through Dynamic Resizing.

Size TLB as needed, shutting off banks. Easier if fully-

associative.
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TLB Optimization – Memory Placement

• (Jeyapaul, Marathe, Shrivastava, VLSI’09) Try to keep

as much in one page as possible via compiler.

• (Lee, Ballapuram. ISLPED’03) Split memory regions

by region (text/data/heap). Better TLB performance,

better energy.
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Bus Protocols

• Bus Protocols

• Cache-Coherence Protocols
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Busses

• Grey Code, only one bit change when incrementing.

Lower energy on busses? (Su and Despain, ISLPED

1995).

• i2c – use addresses with lots of 1s
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Prefetching

• Prefetching does not get looked at as closely.

Various studies show it can be a win energy wise, but it

is a close thing.

• (Guo, Chheda, Koren, Krishna, Moritz. PACS’04)

HW Prefetch increase power 30%; have compiler help

augment with hints, filters.

• (Tang, Liu, Gu, Liu, Gaudiot. Computer Architecture

Letters, 2011).
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Mixed results.
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Metrics Clarification

• Energy delay = E*t (J*s), Energy delay squared = E*t*t

(J*s*s), Smaller is better

• In related papers it is confusing, as no one shows formula

(despite academic papers loving formulas). Often they

use the inverse (so larger is better?) which also confuses

things

• Other papers use MIPS/Watt = insn/J

Not cross-platform. You really want to optimize for time,
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not for instructions which can vary for lots of reasons

and doesn’t exactly equate to time.
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DVFS and other CPU Power/Energy Saving
Methods

• A lot of related work

• Will focus on actual implementations rather than

academic papers this time
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CMOS Energy Equation, Again

• Etot = [(CtotV
2
ddαf) + (NtotIleakageVdd)]t
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Delay, Again

• Td = CLVdd
µCox(

W
L )(Vdd−Vt)

• Simplifies to fMAX ∼ (Vdd−Vt)2
Vdd

• If you lower f, you can lower Vdd

43



DVFS

• Voltage planes – on CMP might share voltage planes so

have to scale multiple processors at a time

• DC to DC converter, programmable.

• Phase-Locked Loops. Orders of ms to change. Multiplier

of some crystal frequency.

• Senger et al ISCAS 2006 lists some alternatives. Two

phase locked loops? High frequency loop and have

programmable divider?
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• Often takes time, on order of milliseconds, to switch

frequency. Switching voltage can be done with less

hassle.
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When can we scale CPU down?

• System idle

• System memory or I/O bound

• Poor multi-threaded code (spinning in spin locks)

• Thermal emergency

• User preference (want fans to run less)
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Adaptive Body Biasing

• Related to but not always considered part of DVFS

• Control voltage applied to body

• Change the threshold voltage

• Reduces leakage but slows performance
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