
ECE 471 – Embedded Systems
Lecture 23

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

26 November 2013

Announcements

• Project

• Don’t forget HW#5

• Plan9 for Raspberry Pi

1

HW#4 Notes

• The displays we are using are LED not LCD

• Commenting code redux. It is subjective, but try to do

better.

• Cable run question: USB cannot run 50 feet without

help. 1-wire can, as can canbus.

• It’s useful to check for error returns, especially on things

like fopen()

2

Power Saving Strategies

3

big.LITTLE / Heterogeneous Computing

• ARM

• big = Cortex A15 = power hungry, fast, high-leakage

• little = Cortex A7 = low power, slow

• “big.LITTLE switcher” by Pitre. have 1:1, move from

slow to fast when need the speed

• have all procs visible to Linux, schedule them with

intelligent scheduler

4

• Can use cpufreq interface, “big” just seen as higher

frequency operating point

5

Race to Idle

• Good strategy on high-leakage chips (Intel?)

• Depends on how CPU bound process is

• Example 1:

– If 34W full speed, 24W half speed, 1W idle, total time

1s

– 1s at half speed, 24W * 1s = 24J

– 0.5s at full speed, 0.5s at idle: 34W * 0.5 +

1W*0.5=17.5J

6

• Example 2:

– Instead, 34W full speed, 24W half, 20W idle

– 1s at half speed, 24W * 1s = 24J

– 0.5s at full speed, 0.5s at idle: 34W*0.5s + 20W*0.5s

= 27J

7

Operating System Power Saving Strategies

• We look primarily at Linux, as it is open source and

technical debates happen in the open

• Windows and OSX often have measurably better laptop

Energy behavior due to tuning and better hardware

testing

8

We previously discussed Power Governors

• With the ondemand governor the kernel controls DVFS

9

Tickless idle / NOHz

• Gets rid of the periodic timer tick (wakeups use Energy)

• Linux typically has periodic timer interrupt at 100,

250, or 1000Hz. Used to implement various timers,

accounting, and context switch. Waste of energy if

system is idle! (also, what if large IBM system with

hundreds of VMs all doing nothing but ticking?)

• Use timers, only schedule a wakeup if needed

• Want to limit wakeups, as they bring CPU out of sleep

10

mode or idle

• Group close-enough timers together. deferrable timers

• Depends on userspace staying quiet if possible.

Userspace does foolish stuff, like poll for file changes or

drive status, blinking cursor, etc.

• Semi-related “NOHz tasks”: Turn off all interrupts, turn

CPU into compute core for HPC

11

Suspend

• Linux supports three states:

1. Standby – minimal latency, higher energy

2. Suspend to RAM – similar to standby, lower energy.

Everything except RAM refresh and wakeup events

turned off

3. Suspend to Disk – even lower energy, high latency

12

Suspend to RAM

• Platform driver provides suspend-to-ram interface

• Often a controller supports fans, batteries, button

presses, wakeup events, etc.

• ACPI interpreter runs in kernel, reads table or AML,

essentially takes program from BIOS and runs in kernel

interpreter

• PCI has D states, D0 (awake) to D3 (asleep). D1 and

D2 are in between and optional and not used

13

• User can start suspend to RAM via ioctl or writing

“mem” to /sys/power/state

14

What happens during Suspend to RAM

• grabs mutex (only one suspend at once). Syncs disk.

Freezes userspace.

• suspends all devices. Down tree, want leaf suspended

first

• disables non-boot CPUs

• disable interrupts, disable last system devices

• Call system sleep state init

15

What happens during Wakeup

• Wakeup event comes in (WOL, button, lid switch, power

switch, etc.)

• CPU reinitialized (similar to bootup code)

• other CPUs reactivated

• devices resumed

• tasks unfrozen

16

• mutex released

• ISSUES: firmware re-load? where stored (problem if on

disk or USB disk, etc. must store in memory?)

• Graphics card coming back, as X in userspace until

recently. kernel mode setting helps

17

The Linux Scheduler

• People often propose modifying the scheduler. That is

tricky.

• Scheduler picks which jobs to run when.

• Optimal scheduler hard. What makes sense for a long-

running HPC job doesn’t necessarily make sense for an

interactive GUI session. Also things like I/O (disk) get

involved.

• You don’t want it to have high latency

18

• Linux originally had a simple circular scheduler. Then

for 2.4 through 2.6 had an O(N) scheduler

• Then in 2.6 until 2.6.23 had an O(1) scheduler

(constant time, no many how many processes).

• Currently the “Completely Fair Scheduler” (with lots of

drama). Is O(log N). Implementation of “weighted fair

queuing”

• How do you schedule? Power? Per-task (5 jobs,

each get 20%). Per user? (5 users, each get 20%).

19

Per-process? Per-thread? Multi-processors? Hyper-

threading? Heterogeneous cores? Thermal issues?

20

Power-Aware Scheduler

• Most of this from various LWN articles

• Linux scheduler is complicated

• maintainers don’t want regressions

• Can handle idle OK, maxed out OK. lightly loaded is a

problem

• 2.6.18 - 3.4 was sched mc power savings in sysctl but

not widely used, removed

21

• “packing-small-tasks” patchset – move small patchsets

to CPU0 so not wake up other sleeping CPUs

small defined as 20% of CPU time

• knowledge of shared power lines. treat CPUs that

must go idle together as a shared entity scheduling wise

(buddy)

• how does this affect performance (cache contention)

• Shi’s power-aware scheduling

• move tasks from lightly loaded CPUs to others with

22

capacity

• if out of idle CPUs, then ramp up and race-to-idle

• Heterogeneous systems (such as big.LITTLE)

• Rasmussen mixed-cpu-power-systems patchset maxed

out little CPU, move task to big CPU

• task tries to use the little CPUs first before ramping up

big

23

Wake Locks and Suspend Blockers

• See “Technical Background of the Android Suspend

Blockers Controversy” by Wysocki, 2010.

• Low-power systems want “opportunistic suspend”

• Google Android propose this interface, kernel developers

push back

• System spends much of time in sleep, with just enough

power to keep RAM going and power sources of events

24

• A Wake Lock prevents the kernel from entering low

power state

• WAKE LOCK SUSPEND – prevent suspending

WAKE LOCK IDLE – avoid idling which adds wakeup

latency

• Try to avoid race conditions during suspend and incoming

events. For example, system trying to suspend, incoming

call coming in, don’t let it lose events and suspend. Take

lock to keep it awake until call over.

• Kernel high-quality timing suspended, sync with low-

25

quality RTC, time drifts

• Kernel developers not like for various reasons. All drivers

have to add explicit support. User processes. What

happens when process holding lock dies.

• You have to trust the apps (gmail) to behave and not

waste battery, no way for kernel to override.

26

CPU Idle Framework?

• In kernel, kernel developers suggest it can be used instead

of wake locks. Gives more control to kernel, doesn’t trust

userspace.

• Tracks various low-power CPU “C-states”. Knows of

Power consumption vs exit latency tradeoffs

• Lower C-states take power to come back, and might do

things like flush the cache.

• kernel registers various C-state “governors” with info on

27

them.

The kernel uses the pm qos value to choose which to

enter.

• QOS say I need latencies better than 100us, so if suspend

takes longer can’t enter that suspend state

• /sys/devices/system/cpu/cpu0/cpuidle has power and

latency values, among other things

• CPU idle stats, turbostat

• ACPI issues. Doesn’t always accurately report C-states,

28

latencies

• ACPI IDLE driver

• Alternate INTEL IDLE as poorly written BIOSes not

idling well on intel

29

Tools

• There are various tools that can show you status of

power under Linux, configure settings, etc.

• Unfortunately you usually have to run these as root

30

Tools – Powertop

• Shows cstates, wakeups, suggested settings, gpu power

• On laptops with battery connected can estimate

energy/power based on battery drain

31

Powertop–Overview

Summary: 344.6 wakeups/second, 0.0 GPU ops/seconds, 0.0 VFS ops/sec

Usage Events/s Category Description

25.1 ms/s 268.6 Process swirl -root

100.0% Device Audio codec hwC0D3: Intel

100.0% Device Audio codec hwC0D0: Cirru

259.1 M-BM-5s/s 29.6 kWork od_dbs_timer

11.1 M-BM-5s/s 17.8 Timer menu_hrtimer_notify

34.2 ms/s 2.0 Process /usr/bin/X :0 vt7 -nolist

1.2 ms/s 10.9 Timer hrtimer_wakeup

326.0 M-BM-5s/s 4.9 Timer tick_sched_timer

5.1 ms/s 1.0 Process powertop

33.3 M-BM-5s/s 2.0 Interrupt [3] net_rx(softirq)

484.3 M-BM-5s/s 1.0 Interrupt [7] sched(softirq)

75.4 M-BM-5s/s 1.0 Process sshd: vince@pts/1

46.6 M-BM-5s/s 1.0 Timer watchdog_timer_fn

32

Powertop – Idle Stats
Package | Core | CPU 0 CPU 2

| | C0 active 1.3% 0.4%

| | POLL 0.0% 0.0 ms 0.0%

| | C1-IVB 0.4% 0.3 ms 0.0%

C2 (pc2) 1.1% | |

C3 (pc3) 0.0% | C3 (cc3) 0.4% | C3-IVB 0.4% 0.3 ms 0.0%

C6 (pc6) 1.5% | C6 (cc6) 0.0% | C6-IVB 0.0% 0.0 ms 0.0%

C7 (pc7) 90.1% | C7 (cc7) 94.9% | C7-IVB 96.4% 7.4 ms 99.1%

| Core | CPU 1 CPU 3

| | C0 active 0.6% 1.1%

| | POLL 0.0% 0.0 ms 0.0%

| | C1-IVB 0.0% 0.1 ms 0.0%

| |

| C3 (cc3) 0.0% | C3-IVB 0.0% 0.3 ms 0.0%

| C6 (cc6) 0.0% | C6-IVB 0.0% 0.0 ms 0.0%

| C7 (cc7) 96.0% | C7-IVB 98.8% 26.2 ms 97.7%

33

Powertop – Frequency Stats

Package | Core | CPU 0 CPU 2

| | Actual 1202 MHz 1198 MHz

Turbo Mode 0.0% | Turbo Mode 0.0% | Turbo Mode 0.0% 0.0%

2.50 GHz 0.0% | 2.50 GHz 0.0% | 2.50 GHz 0.0% 0.0%

2.40 GHz 0.0% | 2.40 GHz 0.0% | 2.40 GHz 0.0% 0.0%

2.31 GHz 0.0% | 2.31 GHz 0.0% | 2.31 GHz 0.0% 0.0%

2.21 GHz 0.0% | 2.21 GHz 0.0% | 2.21 GHz 0.0% 0.0%

2.10 GHz 0.0% | 2.10 GHz 0.0% | 2.10 GHz 0.0% 0.0%

2.00 GHz 0.0% | 2.00 GHz 0.0% | 2.00 GHz 0.0% 0.0%

1.91 GHz 0.0% | 1.91 GHz 0.0% | 1.91 GHz 0.0% 0.0%

...

1500 MHz 0.0% | 1500 MHz 0.0% | 1500 MHz 0.0% 0.0%

1400 MHz 0.0% | 1400 MHz 0.0% | 1400 MHz 0.0% 0.0%

1300 MHz 0.0% | 1300 MHz 0.0% | 1300 MHz 0.0% 0.0%

1200 MHz 2.4% | 1200 MHz 2.4% | 1200 MHz 2.4% 0.0%

Idle 97.6% | Idle 97.6% | Idle 97.6% 100.0%

34

Powertop – Device Stats

Usage Device name

4.7% CPU use

100.0% Audio codec hwC0D3: Intel

100.0% Audio codec hwC0D0: Cirrus Logic

0.0 ops/s GPU

100.0% USB device: IR Receiver (Apple, Inc.)

100.0% USB device: BRCM20702 Hub (Apple Inc.)

100.0% USB device: usb-device-0424-2512

100.0% PCI Device: Broadcom Corporation BCM4331 802.11a/b/

100.0% PCI Device: Intel Corporation Xeon E3-1200 v2/3rd

100.0% PCI Device: Intel Corporation 3rd Gen Core processo

100.0% Radio device: btusb

100.0% USB device: Bluetooth USB Host Controller (Apple

100.0% USB device: USB Keykoard (USB)

100.0% USB device: Dell USB Mouse (Dell)

100.0% PCI Device: Broadcom Corporation NetXtreme BCM57765

35

Powertop – Tunables

>> Bad VM writeback timeout

Bad Enable SATA link power Managmenet for host0

Bad Enable SATA link power Managmenet for host1

Bad Enable SATA link power Managmenet for host2

Bad Enable SATA link power Managmenet for host3

Bad Enable SATA link power Managmenet for host4

Bad Enable SATA link power Managmenet for host5

Bad Enable Audio codec power management

Bad NMI watchdog should be turned off

Bad Autosuspend for USB device Bluetooth USB Host Controller

Bad Autosuspend for USB device USB Keykoard [USB]

Bad Autosuspend for USB device IR Receiver [Apple, Inc.]

Bad Autosuspend for USB device Dell USB Mouse [Dell]

Bad Runtime PM for PCI Device Intel Corporation 7 Series/C210 Se

Bad Runtime PM for PCI Device Intel Corporation Xeon E3-1200 v2/

Bad Runtime PM for PCI Device Intel Corporation 3rd Gen Core pro

36

Tools – Cpufreq

• cpufreq-info (no root) shows info of current governor

and frequency states, etc.

• cpufreq-set (needs root) – set governor or frequency

• cpurfreq-apert (needs root) – shows aperf/mperf

settings from MSR. Useful for determining frequency

values?

37

cpufreq-info
analyzing CPU 3:

driver: acpi-cpufreq

CPUs which run at the same hardware frequency: 0 1 2 3

CPUs which need to have their frequency coordinated by software: 3

maximum transition latency: 10.0 us.

hardware limits: 1.20 GHz - 2.50 GHz

available frequency steps: 2.50 GHz, 2.50 GHz, 2.40 GHz, 2.30 GHz,

2.20 GHz, 2.10 GHz, 2.00 GHz, 1.90 GHz, 1.80 GHz, 1.70 GHz,

1.60 GHz, 1.50 GHz, 1.40 GHz, 1.30 GHz, 1.20 GHz

available cpufreq governors: conservative, powersave, userspace,

ondemand, performance

current policy: frequency should be within 1.20 GHz and 2.50 GHz.

The governor ‘‘ondemand’’ may decide which speed to use

within this range.

current CPU frequency is 1.20 GHz.

cpufreq stats: 2.50 GHz:0.99%, 2.50 GHz:0.00%, 2.40 GHz:0.00%,

1.70 GHz:0.00%, 1.60 GHz:0.03%, 1.50 GHz:0.00%,

1.40 GHz:0.01%, 1.30 GHz:0.01%, 1.20 GHz:98.95% (54321)

38

Powertop – aperf/mperf

• mperf is a counter that counts at the maximum frequency

the CPU supports

• aperf counts at the current running frequency

• current frequency (for things like detecting TurboBoost)

can be detected by the ratio

39

Tools – x86 energy perf policy

• allows adjusting the msr that tells how aggressive turbo

mode is, among other things. hint at a performance vs

power preference

• comes in Linux source tree in tools/power/x86/x86 energy perf policy

40

Tools – Turbostat

• shows cstates, RAPL information, turboboost, other

things from MSRs

• comes in Linux source tree in tools/power/x86/turbostat

41

Turbostat Output

./turbostat -S

%c0 GHz TSC SMI %c1 %c3 %c6 %c7 CTMP PTMP %pc2 %pc3 %pc6 %pc7 Pkg_W Cor_W GFX_W

1.34 1.99 2.29 0 2.72 0.05 0.01 95.88 44 45 2.84 0.02 2.96 86.14 2.31 0.43 0.00

1.24 2.23 2.29 0 1.94 0.13 0.00 96.69 45 46 2.88 0.15 2.97 87.63 2.30 0.43 0.00

1.56 1.77 2.29 0 2.98 0.11 0.00 95.35 43 47 2.63 0.12 2.73 85.67 2.32 0.43 0.00

1.42 1.84 2.29 0 2.51 0.05 0.00 96.03 45 45 2.66 0.03 2.74 86.88 2.30 0.41 0.00

...

%pc6 %pc7 Pkg_W Cor_W GFX_W

2.96 86.14 2.31 0.43 0.00

2.97 87.63 2.30 0.43 0.00

2.73 85.67 2.32 0.43 0.00

2.74 86.88 2.30 0.41 0.00

42

Tools – Sensors

• no need for root if configured right

• shows temps, fans, etc

• Various other sensors from i2c bus, etc.

43

Sensors Part 1
vince@mac-mini:~$ sensors

applesmc-isa-0300

Adapter: ISA adapter

Exhaust : 1798 RPM (min = 1800 RPM, max = 5500 RPM)

TA0P: +37.0C

TA0p: +37.0C

TA1P: +37.8C

TA1p: +37.8C

TC0C: +42.0C

TC0D: +44.8C

TC0E: +42.8C

TC0F: +43.2C

TC0G: +99.0C

TC0J: +0.2C

TC0P: +40.8C

TC0c: +42.0C

TC0d: +44.8C

44

Sensors Part 2
TC0p: +40.8C

TC1C: +42.0C

TC1c: +42.0C

TCGC: +42.0C

TCGc: +42.0C

TCPG: +103.0C

TCSC: +43.0C

TCSc: +43.0C

TCTD: -0.2C

TCXC: +42.8C

TCXc: +42.8C

coretemp-isa-0000

Adapter: ISA adapter

Physical id 0: +46.0C (high = +87.0C, crit = +105.0C)

Core 0: +42.0C (high = +87.0C, crit = +105.0C)

Core 1: +45.0C (high = +87.0C, crit = +105.0C)

45

Example

Gumstix Overo – Näıve 300x300 double-precision floating

point matrix-matrix multiply repeated 10 times.

Frequency Idle P Load P Time Energy

125MHz 2.5W 2.6W 112s 291J

250MHz 2.5W 2.7W 57.8s 156J

500MHz 2.7W 3.0W 31.6s 95J

550MHz 2.8W 3.1W 29.3s 91J

600MHz 2.8W 3.2W 27.4s 87J

46

Example – Governors

Gumstix Overo

• ondemand: 27.57s

• performance: 27.23s

• powersave: 111.0s

47

Example – Mixed Load

Gumstix Overo – Do one MatrixMatrix job every 5 minutes.

Frequency Active Energy Idle Energy Total

125MHz 291J 470J 761J

250MHz 156J 605J 761J

500MHz 95J 723J 818J

550MHz 91J 756J 847J

600MHz 87J 761J 848J

48

