
ECE 471 – Embedded Systems
Lecture 25

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

5 December 2013



Announcements

• Project Update

• HW#5 Update – due at beginning of class on Tuesday.

1



Optimizations – What does perf tell us?

2



Low IPC

• IPC = Instructions Per Cycle

• On simple processors you max out at 1.0, on modern

super-scalar can be higher

• Related metric: CPI (cycles per instruction) which is the

inverse; you want this to be lower

• On in-order processors, the way to fix this is often code

scheduling. Putting together instruction streams so that

3



dependencies are avoided. Compilers can in theory do

this for you.

• Out-of-order processors in theory do this for you

• Other things, such as cache misses, can also cause poor

IPC. Look at cache metrics and stall metrics for more

info.

4



High Cache and TLB Miss Rate

• Cache misses slow down your program by stalling your

processor waiting for memory.

• TLB misses are similar. The TLB caches the virtual-

memory physical to virtual translations. TLBs are small,

and when a TLB miss happens the operating system has

to walk the page table which is slow.

• Causes of cache misses:

– Cold misses – first access to a value and not in cache.

5



prefetching (both hardware and software) can help this

case

– Capacity misses – Cache just isn’t big enough to hold

all of the values you are trying to access.

– Conflict misses – two values you are trying to access

have addresses that put them into the same cache line.

Set associative caches can help, but even so this can

still happen. One way to avoid this is add padding

to change the address of the two objects, though this

can just push the problem somewhere else rather than

really fixing it.

6



– Coherency misses – on multi-processor systems “cache

coherency protocols” handle values shared across

CPUs. If both CPUs are trying to write the same

value, performance will suffer (also same writes to

same cache line even if not the same variable– this is

known as “false sharing”)

• Various other things you can do to improve cache

performance:

– Use smaller data structures

– Use cache blocking (break big data structures into

7



smaller pieces with better locality)

8



High Stall Rate

• A processors stalls when it cannot continue execution

because it is waiting on some sort of resource

• Cache stalls: waiting on icache (for next instruction) or

dcache (memory value)

• Cannot issue instruction because functional units not

ready (not enough adders, floating point, etc)

• Various units can be full

9



High Branch Predictor Miss Rate

• If branch is predicted wrong, processor has to stop, kick

out all wrong-executed instructions, and re-start

• What you can do:

provide hints for direction

re-arrange code to avoid aliasing in tables

use Conditional moves/execution

Loop unrolling (adds code size/complexity)

10



Other Optimizations

• Code Hoisting

• Dead code elimination

• Function Inlining

• Common Subexpression Elimination

• Use lower precision or unsafe floating point

• Change Algorithms! Use optimized libraries!

11



• Multi-thread your code

12



Validating Perf Counters

• Hard to do. Compilers and prefetchers too smart.

• Write code to get 100% cache miss rate? Prefetchers

are smart

• Write poor matrix-matrix code as an example? Compiler

fixes it

13


