
ECE471: Embedded Systems – Homework 7
SPI, A/D and Temperature Probe

Due: Thursday, 6 November 2014, 9:30AM EST

1. Use your Raspberry Pi for this homework.
You will need an MCP3008 SPI A/D converter as well as a TMP36 temperature sensor (looks like a
transistor) that I handed out in class. If you missed class, you can stop by my office to pick these up.

You can view the datasheet for the MCP3008:
http://web.eece.maine.edu/~vweaver/classes/ece471_2014f/datasheets/MCP3008.pdf

You can view the datasheet for the TMP36:
http://web.eece.maine.edu/~vweaver/classes/ece471_2014f/datasheets/TMP35_36_37.pdf

Camera

Pin1 Pin2

Composite

Audio

HDMI

Power

Pin25 Pin26

Ethernet

USB

Audio/Video

Pin1 Pin2

Ethernet

USB USB

Power

HDMI

Figure 1: Location of header on Raspberry Pi Model B and B+

2. Get the MCP3008 providing values over SPI (3 points)

First wire up the SPI device to the Raspberry Pi. You can use Figure 1 and Table 1 for guidance.

(a) Put the MCP3008 on your pi on a breadboard:
Connect 3.3V on the Pi to VDD (pin16) on the MCP3008.
Also connect 3.3V to VREF (pin15) on the MCP3008.
Connect GND on the Pi to AGND (pin14) on the MCP3008.
Also connect GND to DGND (pin9) on the MCP3008.
Connect SCLK on the Pi to CLK (pin13) on the MCP3008.
Connect MOSI on the Pi to DIN (pin11) on the MCP3008.
Connect MISO on the Pi to DOUT (pin12) on the MCP3008.
Connect CE0 on the Pi to CS (pin10) on the MCP3008.

http://web.eece.maine.edu/~vweaver/classes/ece471_2014f/datasheets/MCP3008.pdf
http://web.eece.maine.edu/~vweaver/classes/ece471_2014f/datasheets/TMP35_36_37.pdf


Table 1: Raspberry Pi Header Pinout
3.3V 1 2 5V

GPIO2 (SDA) 3 4 5V
GPIO3 (SCL) 5 6 GND

GPIO4 7 8 GPIO14 (UART_TXD)
GND 9 10 GPIO15 (UART_RXD)

GPIO17 11 12 GPIO18 (PCM_CLK)
GPIO27 13 14 GND
GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24
GPIO10 (MOSI) 19 20 GND
GPIO9 (MISO) 21 22 GPIO25

GPIO11 (SCLK) 23 24 GPIO8 (CE0)
GND 25 26 GPIO7 (CE1)

ID_SD (EEPROM) 27 28 ID_SC (EEPROM)
GPIO5 29 30 GND
GPIO6 31 32 GPIO12

GPIO13 33 34 GND
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20

GND 39 40 GPIO21

(b) For this first part, we will measure 0V on CH0 (pin1) and 3.3V on input CH1 (pin2). Hook up
power and ground to those pins on the MCP3008.

(c) Enable SPI support in Linux running on your Pi. To do this you might need to run:
sudo modprobe spi-bcm2708
sudo modprobe spidev
You can have these kernel modules loaded automatically at boot time by editing /etc/modules
and putting:
spi-bcm2708
spidev
In the file.
You may also have to comment out (by putting a # at the start of the line) the spi-bcm2708
line in the file /etc/modprobe.d/raspi-blacklist.conf
You can look at dmesg | grep spi to see if SPI support was found and enabled

(d) Modify the test_spi.c file to read values from the MCP3008 and print them to the screen.
See the classnotes for more details.

• Open the /dev/spidev0.0 file for read/write access.
• Use ioctl to set the mode to SPI_MODE_0
• Use ioctl to set the bitsperword to 8.
• Use ioctl to set the max frequency to 100kHz.
• In an infinite loop, read the value of CH0 and CH1 once a second and print the voltages to

the screen.

2



– As described in class use ioctl to write 3 bytes where the first includes the start bit,
the second says to use single-ended mode. This is followed by 3 bits indicating the
channel to read. The rest of the byte (and the next byte) should be 0.

– This will return 3 bytes. The first byte can be ignored, the bottom 2 bits of the second
byte are bits 9 and 8, and the third byte is the bottom 8 bits of the result.

– Get the 10 bits as an integer, then use the VIN = value×VREF

1024
to convert to a floating-point

voltage.
– CH0 should be roughly 0V and CH1 should be 3.3V.

(e) Be sure to comment your code!

TMP36

3.3V GNDVout

Figure 2: TMP36 Pinout

3. Hook up the TMP36 to the SPI device (3 points)

(a) Copy your test_spi.c file to display_temp.c

(b) Connect the TMP36 temperature probe to CH2.
Connect pin1 (3.3V) of the TMP36 to 3.3V
Connect pin2 (Vout) of the TMP36 to CH2 on the MCP3008
Connect pin3 (GND) of the TMP36 to gnd
WARNING! the datasheet shows the pins from the bottom not the top. If you reverse the
power/ground settings on the chip it will quickly heat up to 100+ degrees and will possibly
be ruined! Follow the diagram in Figures 2 and you will be OK.

(c) Modify the code to print the current temperature as read by the probe, once a second. You can
print degrees C or F as per your preference, but make sure the units are displayed.

(d) The temperature can be determined with the following equation:
deg_C = (100× voltage)− 50

(e) Also the following might be useful:
deg_F = (deg_C × 9

5
) + 32

(f) Be sure to comment your code!

3



4. Something Cool (1 point)

Copy your code to temp_cool.c and modify it to do something cool.

• Monitor the temperature, and after a while print the high/low temperatures recorded.

• Monitor the temperature and print a message if a temp is exceeded (for example, print a message
if someone touches the probe long enough to raise the temperature).

• Note: Lab9 is probably going to be to display the temperature on the LED display so while it
will be cool to do that, you can wait a few weeks.

5. Questions (2 points)

Answer the following in the README file:

(a) What is one advantage SPI has over i2c?

(b) What is one disadvantage of SPI compared to i2c?

(c) If you wanted to add a second temperature probe to this device, but at the end of a 50-foot long
cable, would you still use a TMP36 sensor? Why or why not?

6. Linux Fun (1 point)

Linux shells have what’s known as job control. This isn’t a question, but you can try it out and see
how it works. To suspend something, press Control-Z. So if you are editing code in pico, try pressing
Control-Z. It should bring you back to the prompt. To get back to pico again type fg. You can use
this to run make while editing and going back without losing your place. You can also use bg to
put programs running in the background, but be careful (you don’t want that to happen to pico for
example).

Linux has very useful devices under /dev besides the i2c and spi nodes.

(a) The first is /dev/null. What happens if you pipe a command to it?
For example ls > /dev/null?

(b) The next is /dev/full. What happens if you pipe a command to it?
For example ls > /dev/full?

(c) /dev/zero contains nothing but zeros. Why might that be useful?

(d) What do you think /dev/random contains?

7. Submitting your work

• Run make submit which will create a hw7_submit.tar.gz file containing Makefile,
README, test_temp.c, temp_cool.c and display_temp.c.
You can verify the contents with tar -tzvf hw7_submit.tar.gz

• e-mail the hw7_submit.tar.gz file to me by the homework deadline. Be sure to send the
proper file!

4


