
ECE471: Embedded Systems – Homework 9
Temperature Display

Due: Wednesday, 26 November 2014, 12pm (noon) EST

1. Use your Raspberry Pi for this homework.
You will need the i2c display from Homework 5 as well as *either* the MCP3008/TMP36 from Home-
work 7 *or* the DS18B20 sensor from Homework 8 (your choice).

2. Part 2: Writing to the Display
Take one of your temperature reading homeworks as a basis for this project. Copy your code over
display_temp.c and get it displaying the temperature to the screen.

Now hook up the i2c LED display, and make it display the temperature (in F or C,your choice), updated
once per second. Feel free to re-use code from earlier homeworks.

Your code should handle four cases:

(a) Temperatures between 0 and 99.9 degrees, inclusive. These should be displayed as two digits, a
decimal point, another digit, and then a degree symbol (which is just a crude circle made of the
top 4 segments on the display).

(b) Temperatures between -99 and 0 degrees. These should display a minus sign and then two digits
of temperature, then the degree symbol.

(c) Temperatures between 100 and 999 degrees should print three digits of temperature, then the
degree symbol.

(d) Invalid temperatures that won’t fit the display (and errors reading the thermometer) should be
reported in a method that isn’t a valid temperature. It is your choice how to indicate this.

To test the above you can first write the display code (maybe as a separate function) and hard-code
the value to display. Then once it works on all of the possibilities, then hook it up to your temperature
reading code.

3. Something Cool
No something cool for this homework. Put any coolness to use in your final project.

4. Questions
Edit the README file to have your name and answer the following questions.

(a) Name one example of how poorly written embedded code can have disatrous effects in a product.

(b) Why might it be good to always try to write correct, documented, well tested code even if you
think it’s not going to ever be used in anything important?

5. Linux Fun
When a file is created or modified on Linux various timestamps are updated. atime (last access time)
mtime (last modified time) and ctime (creation time).

The ls -lt (that’s a lowercase l) will show all files and their last modified time.

The Linux touch command will update the timestamps on a file to the current time (and create the
file if it doesn’t exist). You can also specify the time. You can do things like



touch --date "1983-10-16 14:40" blah

which will update the timestamp on the file blah to the specified date.
You can also do fun things like

touch --date "next Thursday" blah

(a) Use touch to change the file creation time of the "fakedate" file (included with the test code) with
a date from some other year (not 2014).

(b) What happens if you try to create a date in the year 2044? Why?

(c) I have had students turn in homework late, but telling me “check the file timestamp, it shows I
finished it before the deadline”. Why might I not take this as a good argument?

6. Submitting your work

• Run make submit which will create a hw9_submit.tar.gz file containing Makefile,
README, display_temp.c, and fakedate. You can verify the contents with tar -tzvf
hw9_submit.tar.gz

• e-mail the hw9_submit.tar.gz file to me by the homework deadline. Be sure to send the
proper file!

2


