
ECE 471 – Embedded Systems
Lecture 4

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

11 September 2014

Announcements

• Any questions on HW#1?

• HW#2 will be posted Friday

• If you wanted to borrow a Pi for the semester, stop by

my office to pick it up.

1

Assembly Language: What’s it good for?

• Understanding your computer at a low-level

• Shown when using a debugger

• It’s the eventual target of compilers

• Operating system writers (some things not expressible in

C)

• Embedded systems (code density)

• Research. Computer Architecture. Emulators/Simulators.

• Video games (or other perf critical routines, glibc, kernel,

etc.)

2

How Code Works

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)

3

Tools

• compiler: takes code, usually (but not always) generates

assembly

• assembler: GNU Assembler as (others: tasm, nasm,

masm, etc.)

creates object files

• linker: ld

creates executable files. resolves addresses of symbols.

shared libraries.

4

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction – 0xe0803080 == add r3,

r0, r0, lsl #1

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmtypRd

RnS0 1 0 00 0 0cond

imm5 0

5

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

6

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

7

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

8

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

9

STM32L-Discovery Physical Memory
Layout

RAM

Peripheral Space

Flash

0xffff ffff

0x4000 0000

0x2000 0000 (16k)

0x0800 0000 (128k)

0x0000 0000

Start of code

....

NMI Vector

Reset Vector

Stack Pointer

10

Linux Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

11

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() and brk(). Grows

up

• Stack: LIFO memory structure. Grows down.

12

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

13

Loader

• /lib/ld-linux.so.2

• loads the executable

14

Static vs Dynamic Libraries

• Static: includes all code in one binary.

Large binaries, need to recompile to update library code,

self-contained

• Dynamic: library routines linked at load time.

Smaller binaries, share code across system, automatically

links against newer/bugfixes

15

How a Program is Loaded

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

16

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

17

What you have at entry

• Registers

• Instruction pointer at beginning

• Stack

• command line arguments, aux, environment variables

• Large contiguous VM space

18

