
ECE 471 – Embedded Systems
Lecture 7

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

23 September 2014

Announcements

• Does everyone have access to a breadboard and jumper

wires?

• How about LED, switch, and suitable resistors?

• Just taking stock of what’s needed for HW#4.

1

HW2 Review

• Everyone seems to be accessing the Pi OK.

• More people using network to copy than I thought.

• Be sure to follow directions! Was lax, but if it says to

print ECE471 and a number, be sure you do it!

• more info on ls. Looking for man. “info” or ls --help

• ls -a shows hidden files. Hidden files on UNIX

• BSS. Uninitialized or zeroed. Saves space in executable.

2

HW3 Notes

• Mention strace to see the syscalls

• Can disassemble code with objdump --disassemble-all

• gdb debugger

◦ gdb ./hello world.c

◦ run – to run program

◦ bt – show backtrace

◦ disassem – disassemble

◦ info regis – show register values

◦ More advanced features like single-step, breakpoint,

3

etc. also available.

4

Kernel Programming ABIs

• OABI – “old” original ABI (arm). Being phased out.

slightly different syscall mechanism, different alignment

restrictions

• EABI – new “embedded” ABI (armel)

• hard float – EABI compiled with ARMv7 and VFP

(vector floating point) support (armhf). Raspberry Pi

(raspbian) is compiled for ARMv6 armhf.

5

System Calls (EABI)

• System call number in r7

• Arguments in r0 - r6

• Call swi 0x0

• System call numbers can be found in

/usr/include/arm-linux-gnueabihf/asm/unistd.h

They are similar to the 32-bit x86 ones.

6

System Calls (OABI)

The previous implementation had the same system call

numbers, but instead of r7 the number was the argument

to swi. This was very slow, as there is no way to

determine that value without having the kernel backtrace

the callstack and disassemble the instruction.

7

Low-level System Calls

int fd ,result;

char buffer [1024];

fd=open("hello_world.c",O_RDONLY);

if (fd <0) printf("Error %s!\n",strerror(errno));

result=read(fd ,buffer ,1024);

if (result <0) printf("Error %s!\n",strerror(errno));

printf("Read %d bytes\n",result);

result=write(fd ,buffer ,1024);

if (result <0) printf("Error %s!\n",strerror(errno));

printf("Wrote %d bytes\n",result);

result=close(fd);

8

File Descriptors

Your process starts with 3 already configured

• 0 – stdin – Standard Input

• 1 – stdout – Standard Output

• 2 – stderr – Standard Error

9

Redirecting I/O

You can redirect these at the shell:

• ls > ls output – pipe to file

• sort < ls output – pipe from file

• hello world 2> errors – stderr

• ls | sort | wc – pipelines

10

Manpage

The easiest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look

for system call documentation (which is type 2).

11

Assembly

• @ is the comment character. # can be used on line

by itself but will confuse assembler if on line with code.

Can also use /* */

• Order is source, destination

• Constant value indicated by # or $

• Optionally put % in front of register name

12

New things to note in hello world

• The fixed-length 32-bit ARM cannot hold a full 32-bit

immediate

• Therefore a 32-bit address cannot be loaded in a single

instruction

• In this case the “=” is used to request the address

be stored in a “literal” pool which can be reached by

PC-offset, with an extra layer of indirection.

13

Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards

in ECE271.

• Compile code

• Prepare for upload (hexbin?)

• Upload into FLASH

• Boots to offset

14

• Setup, flat memory (usually), stack at top, code near

bottom, IRQ vectors

• Handle Interrupts

• Must do I/O directly (no drivers)

Although if lucky, can find existing code.

• Code is specific to the hardware you are on

15

Instead, one can use an Operating System

16

Why Use an Operating System?

• Provides Layers of Abstraction

– Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

– Abstract software: with VM get linear address space,

same system calls on all systems

– Abstraction comes at a cost. Higher overhead,

unknown timing

17

• Multi-tasking / Multi-user

• Security, permissions (Linus dial out onto /dev/hda)

• Common code in kernel and libraries, no need to re-

invent

18

What’s included with an OS

• kernel / drivers – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.

19

