
ECE 471 – Embedded Systems
Lecture 8

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

25 September 2014



Announcements

• For Homework 3 you’ll need a breadboard, some wire,

an LED, and some resistors.

1



Brief Overview of the Raspberry Pi Board

Model B

Camera

Pin1 Pin2

Composite

Audio

HDMI

Power

Pin25 Pin26

Ethernet

USB

Model B+

Audio/Video

Pin1 Pin2

Ethernet

USB USB

Power

HDMI

2



Rasp-pi Header

• Model B has 17 GPIOs (out of 26 pins), B+ has 9 more

(out of 40)

• 3.3V signaling logic. Need level shifter if want 5V or

1.8V

• Linux by default configures some for other purposes

(serial, i2c, SPI)

3



Rasp-pi Header
3.3V 1 2 5V

GPIO2 (SDA) 3 4 5V
GPIO3 (SCL) 5 6 GND

GPIO4 7 8 GPIO14 (UART TXD)
GND 9 10 GPIO15 (UART RXD)

GPIO17 11 12 GPIO18 (PCM CLK)
GPIO27 13 14 GND
GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24
GPIO10 (MOSI) 19 20 GND

GPIO9 (MISO) 21 22 GPIO25
GPIO11 (SCLK) 23 24 GPIO8 (CE0)

GND 25 26 GPIO7 (CE1)

ID SD (EEPROM) 27 28 ID SC (EEPROM)
GPIO5 29 30 GND
GPIO6 31 32 GPIO12

GPIO13 33 34 GND
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20

GND 39 40 GPIO21

4



How you enable GPIO on STM32L

A lot of read/modify/write instructions to read current

register values and then to shift/mask to write out updated

bitfields.

• Enable GPIO Clock

• Set output mode for GPIO.

• Set GPIO type.

• Set pin clock speed.

• Set pin pull-up/pull-down

• Set or clear GPIO pin.

5



How you enable on BCM2835 (Rasp-pi)

• Documented in BCM2835 ARM Peripherals Manual

• 53 GPIOs (not all available on board)

• Similar to how done on STM32L... but we have an

operating system

6



Letting the OS handle it for you

7



Linux GPIO interface

• Documentation/gpio/sysfs.txt

• sysfs and string based

8



A few low-level Linux Coding Instructions

9



Enable a GPIO for use

To enable GPIO 17:

write “17” to /sys/class/gpio/export

To disable GPIO 17:

write “17” to /sys/class/gpio/unexport

char buffer [10];

fd=open("/sys/class/gpio/export",O_WRONLY );

if (fd <0) fprintf(stderr ,"\tError enabling\n");

strcpy(buffer ,"17");

write(fd ,buffer ,2);

close(fd);

10



Set GPIO Direction

To make GPIO 17 an input:

write “in” to /sys/class/gpio/gpio17/direction

To make GPIO 17 an output:

write “out” to /sys/class/gpio/gpio17/direction

fd=open("/sys/class/gpio/gpio17/direction",O_WRONLY );

if (fd <0) fprintf(stderr ,"Error!\n");

write(fd ,"in" ,2);

close(fd);

11



Read/Write GPIO Value

To read value of GPIO 17:

read /sys/class/gpio/gpio17/value To write value of

GPIO 17:

write /sys/class/gpio/gpio17/value
fd=open("/sys/class/gpio/gpio17/value",O_WRONLY );

if (fd <0) fprintf(stderr ,"Error writing !\n");

write(fd ,"1" ,1);

close(fd);

12



Delay

• Busy delay (like in 271).

for(i=0;i<1000000;i++);

Harder to do in C. Why?

Compiler optimizes away.

• usleep() puts process to sleep for a number of

microseconds. But can have issues if want exact delay.

Why? OS potentially context switches every 100ms.

• Other ways to implement: Set up PWM? Timers?

13



Implementations

• Busy loop. Bad, burns CPU / power

• usleep(). But can take a while to respond.

• Interrupt when ready! poll()

14



GPIO Interrupts on Linux

May need a recent version of Raspbian.

First write ”rising”, ”falling”, or ”both” to

/sys/class/gpio/gpio17/edge.

Then open and poll /sys/class/gpio/gpio17/value.
struct pollfd fds;

int result;

fd=open("/sys/class/gpio/gpio18/value",O_RDONLY );

fds.fd=fd;

fds.events=POLLPRI|POLLERR;

while (1) {

result=poll(&fds ,1, -1);

if (result <0) printf("Error!\n");

lseek(fd ,0,SEEK_SET );

read(fd,buffer ,1); }

15



Debouncing!

• Pull-up / Pull-down resistor. Why?

• Noisy switches, have to debounce

• Manual, no built-in debounce like on STM32L

16



Why Use an Operating System?

• Provides Layers of Abstraction

– Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

– Abstract software: with VM get linear address space,

same system calls on all systems

– Abstraction comes at a cost. Higher overhead,

unknown timing

17



• Multi-tasking / Multi-user

• Security, permissions (Linus dial out onto /dev/hda)

• Common code in kernel and libraries, no need to re-

invent

18



What’s included with an OS

• kernel / drivers – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.

19



Operating Systems Types

• Monolithic kernel – everything in one big address space.

Something goes wrong, lose it all. Faster

• Microkernel – separate parts that communicate by

message passing. can restart independently. Slower.

• Microkernels were supposed to take over the world.

Didn’t happen. (GNU Hurd?)

• Famous Torvalds (Linux) vs Tannenbaum (Minix)

flamewar

20



Common Desktop/Server Operating
Systems

• Windows

• OSX

• Linux

• FreeBSD / NetBSD / OpenBSD

• UNIX (Irix/Solaris/AIX/etc.)

• BeOS/Haiku

21



Embedded Operating Systems

• Microsoft WinCE, Windows Mobile

• Linux / Android

• VXworks – realtime OS, used on many space probes

• Apple iOS

• QNX – realtime microkernel UNIX-like OS, owned by

Blackberry now

• Cisco iOS

22



Embedded Linux Distributions

• linaro – consortium that work on ARM software

• openwrt – small distro initially designed for wireless

routers

• yocto – Linux Foundation sponsored embedded distro

• maemo – embedded distro originally by Nokia (obsolete)

• MeeGo – continuation of maemo, also obsolete

23



• Tizen – Follow up on MeeGo, by Samsung and Intel

• Ängstrom – Merger of various projects

• And many others. It’s very easy to put together a Linux

distribution

24



Linux/UNIX History

25



Why is Linux used in Embedded Systems?

26


