ECE 471 — Embedded Systems
Lecture 8

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

25 September 2014

Announcements

e For Homework 3 you'll need a breadboard, some wire,
an LED, and some resistors.

Brief Overview of the Raspberry Pi Board

Model B Model B+

Power Pin1 Pin2 Pin1 Pin2

P

Rasp-pi Header

e Model B has 17 GPIOs (out of 26 pins), B+ has 9 more
(out of 40)

e 3.3V signaling logic. Need level shifter if want 5V or
1.8V

e Linux by default configures some for other purposes
(serial, i2c, SPI)

Rasp-pi Header

s 1
GPIO2 (SDA) | 3 | 4
GPIO3 (SCL) | 5 | 6
GPIO4 | 7 | 8 | GPIO14 (UART_TXD)
| GNDT 9 | 10 | GPIO15 (UART_RXD)
GPIO17 | 11 | 12 | GPIO18 (PCM_CLK)
GPIO27 | 13 | 14
GPIO22 | 15 | 16 | GPIO23
18 | GPI1024
20
22
24
26
ID_SD (EEPROM) | 27 | 28 [ID_SC (EEPROM)
GPi05 | 29 | 30 [NGNDNNEEEG—
GPIO6 | 31 | 32 | GPIO12
GPI013 | 33 | 34 |GNDIIEEG—
GPIO19 | 35 | 36 | GPIO16
GPIO26 | 37 | 38 | GPIO20
IGNDY| 30 | 40 | GPio21

How you enable GPIO on STM32L

A lot of read/modify/write instructions to read current

register values and then to shift/mask to write out updated
bitfields.

e Enable GPIO Clock

e Set output mode for GPIO.
e Set GPIO type.

e Set pin clock speed.

e Set pin pull-up/pull-down
e Set or clear GPIO pin.

-y 5

How you enable on BCM2835 (Rasp-pi)

e Documented in BCM2835 ARM Peripherals Manual
e 53 GPIOs (not all available on board)

e Similar to how done on STM32L... but we have an
operating system

Letting the OS handle it for you

Linux GPIO interface

e Documentation/gpio/sysfs.txt

e sysfs and string based

A few low-level Linux Coding Instructions

Enable a GPIO for use

To enable GPIO 17:

write “17" to /sys/class/gpio/export
To disable GPIO 17:

write “17" to /sys/class/gpio/unexport

char buffer [10];
fd=open("/sys/class/gpio/export",0_WRONLY) ;

if (£d<0) fprintf (stderr,"\tError enabling\n");
strcpy (buffer,"17");

write (fd,buffer,2);

close(fd);

10

Set GPIO Direction

To make GPIO 17 an input:

write “Iin” to /sys/class/gpio/gpiol7/direction
To make GPIO 17 an output:

write “out” to /sys/class/gpio/gpiol7/direction

fd=open("/sys/class/gpio/gpiol7/direction",0_WRONLY);
if (£d<0) fprintf (stderr,"Error!\n");
write(fd,"in" ,2);

close(fd);

11

Read /Write GPIO Value

To read value of GPIO 17:

read /sys/class/gpio/gpiol7/value To write value of
GPIO 17:

write /sys/class/gpio/gpiol7/value

fd=open("/sys/class/gpio/gpiol7/value" ,0_WRONLY) ;
if (£d<0) fprintf(stderr,"Error_ writing!\n");
write(fd,"1" ,1);

close (fd);

-y 12

Delay

e Busy delay (like in 271).
for(i=0;i<1000000;i++);
Harder to do in C. Why?
Compiler optimizes away.

e usleep() puts process to sleep for a number of
microseconds. But can have issues if want exact delay.
Why? OS potentially context switches every 100m:s.

e Other ways to implement: Set up PWM? Timers?

/Y 13

Implementations

e Busy loop. Bad, burns CPU / power
e usleep(). But can take a while to respond.

e Interrupt when ready! poll()

14

GPIO Interrupts on Linux

May need a recent version of Raspbian.

First write “rising”, Tfalling”, or "both” to
/sys/class/gpio/gpiol7/edge.

Then open and poll /sys/class/gpio/gpiol7/value.

struct pollfd fds;
int result;

fd=open("/sys/class/gpio/gpiol8/value",0_RDONLY);
fds.fd=1fd;
fds.events=POLLPRI|POLLERR;
while (1) {
result=poll (&fds,1, -1);
if (result<0) printf("Error!\n");
lseek (fd,0,SEEK_SET) ;
read (fd,buffer,1); 3}

-y 15

Debouncing!

e Pull-up / Pull-down resistor. Why?
e Noisy switches, have to debounce

e Manual, no built-in debounce like on STM32L

16

Why Use an Operating System?

e Provides Layers of Abstraction

— Abstract hardware: hide hardware differences. same
hardware interface for classes of hardware (things like
video cameras, disks, keyboards, etc) despite differing
Implementation details

— Abstract software: with VM get linear address space,
same system calls on all systems

— Abstraction comes at a cost. Higher overhead,
unknown timing

-y 17

e Multi-tasking / Multi-user
e Security, permissions (Linus dial out onto /dev/hda)

e Common code in kernel and libraries, no need to re-
Invent

-y 18

What'’s included with an OS

e kernel / drivers — Linux definition
e also system libraries — Solaris definition

e low-level utils / software / GUI — Windows definition
Web Browser included?

e Linux usually makes distinction between the OS Kernel
and distribution. OSX/Windows usually doesn't.

-y 19

Operating Systems Types

e Monolithic kernel — everything in one big address space.
Something goes wrong, lose it all. Faster

e Microkernel — separate parts that communicate by
message passing. can restart independently. Slower.

e Microkernels were supposed to take over the world.
Didn’t happen. (GNU Hurd?)

e Famous Torvalds (Linux) vs Tannenbaum (Minix)
flamewar

/Y 20

Common Desktop/Server Operating
Systems

e \Windows

o OSX

e Linux

e FreeBSD / NetBSD / OpenBSD
e UNIX (lrix/Solaris/AlX/etc.)

e BeOS/Haiku

/Y 21

Embedded Operating Systems

e Microsoft WinCE, Windows Mobile

e Linux / Android

e VVXworks — realtime OS, used on many space probes

e Apple iOS

e QNX — realtime microkernel UNIX-like OS, owned by
Blackberry now

e Cisco i0S

-y 22

Embedded Linux Distributions

e linaro — consortium that work on ARM software

e openwrt — small distro initially designed for wireless
routers

e yocto — Linux Foundation sponsored embedded distro
e maemo — embedded distro originally by Nokia (obsolete)

e MeeGo — continuation of maemo, also obsolete

-y 23

e Tizen — Follow up on MeeGo, by Samsung and Intel
e Angstrom — Merger of various projects

e And many others. It's very easy to put together a Linux
distribution

-y 24

Linux/UNIX History

25

Why is Linux used in Embedded Systems?

-y 26

