
ECE 471 – Embedded Systems
Lecture 11

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

7 October 2014



Announcements

• Midterm is tentatively scheduled for October 21st.

1



Homework #4 Review

• Submit the right files!

Make sure the code compiles!

Include your name!

• Review of how read() and write() work, the main issue

being you read into a buffer pointed to by a pointer,

and it’s important to get the number of bytes read/write

right.

For open() need proper O RDONLY, O WRONLY

General C stuff. Try to fix compiler warnings.

2



Control-C and what it does.

void functions, pre-declare functions

Error checking! Silent fail is bad.

• For the switch question, wanted it to print on press and

on release. Have a state bit that remembers last state.

Remember the value you read is the ASCII value of

result.

• Debounce

Was it needed in practice? Comment your code if

3



debounce included! One way is to when changes, sleep

a small amount (1ms?) and re-read and see if the value

is the same. Keep reading until get same twice in a row.

Also saw just once it changes, sleep some, in the

assumption the first change is right and other spurious.

• 5.a Why udelay? Less resources (not busy sleeping),

cross-platform, compiler won’t remove, other things can

run

• 5.b Layer of abstraction. In this case, not having

4



to bitbang the interface or know low-level addresses,

portability among machines.

• 5.c Limitations : higher overhead, not all features

exposed, uncertain timing

• 5.d. Web browser part of OS? Microsoft law suit.

Interesting comments on google/chrome

• 6. Machine BCM2708 (not BCM2835)

dmesg good place to find if hardware working, error

messages, etc.

b. 3.10.25+ (1)

5



3.2.27 (1)

3.6.11+ (1)

3.8.13 (1 beaglebone)

3.10.30 (3)

3.12.22+ (3)

3.12.28+ (5) (me)

3.12.33+ (1)

c. Disk space. Why -h? Human readable.

6



Booting Linux

• Bootloader jumps into OS entry point

• Set Up Virtual Memory

• Setup Interrupts

• Detect Hardware / Install Device Drivers

• Mount filesystems

• Pass control to userspace / call init

7



• Run init scripts

• rc boot scripts, /etc/rc.local

Start servers, or “daemons” as they’re called under

Linux.

• fork()/exec(), run login, run shell

8



How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

9



to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

10



Viewing Processes

• You can use top to see what processes are currently

running

• Also ps but that’s a bit harder to use.

11



Context Switching

• OS provides the illusion of single-user system despite

many processes running, by switching between them

quickly.

• Switch rate in general 100Hz to 1000Hz, but can vary

(and is configurable under Linux). Faster has high

overhead but better responsiveness (guis, etc). Slower

not good for interactive workloads but better for long-

running batch jobs.

12



• You need to save register state. Can be slow, especially

with lots of registers.

• When does context switch happen? Periodic timer

interrupt. Certain syscalls (yield, sleep) when a process

gives up its timeslice. When waiting on I/O

• Who decided who gets to run next? The scheduler.

• The scheduler is complex.

• Fair scheduling? If two users each have a process, who

runs when? If one has 99 and one has 1, which runs

13



next?

• Various O() ratios for the schedulers

14


