
ECE 471 – Embedded Systems
Lecture 12

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

9 October 2014



Announcements

• Homework grades have been sent out, let me know if

you did not receive them.

• A midterm exam is coming up soon.

1



Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use

2



it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.

3



Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where

4



it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide

5



Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel

6



to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.

7



Interrupts

• What are interrupts?

• Something happens, signal pulled up, CPU stops

executing (possibly flushing the pipeline), PC changes to

handler address, may look up in vector table.

• Alternatives (polling)

• Precise vs non-precise

• Hardware issues: (complicate hardware, restarting

8



instruction stream, when can you be interrupted, flushing

pipelines, priority levels)

• Software issues: capturing, restarting code, latency,

performance

• When in control can often cli/sti stop start interrupts to

avoid code being interrupted. Why is this dangerous?

• Linux NAPI – switch to polling if interrupt rate too high

9



ARM Interrupts

• 7 types. Data Abort, Fast Interrupt Request, Interrupt

Request, Prefetch Abort, Software Interrupt, Reset,

Undefined Instruction

• ARM designed with fast interrupts in mind

• On interrupt: cspr saved to specific spsr, pc saved to

special lr, cpsr set to exception mode, pc points to

address handler

• Vector table, holds instructions branched to on irq.

10



Usually a branch or move insn to an irq handler

• Priority mechanism, when happen at same time

11



Interrupt Handler

• Disable interrupts

• Save register context

• Figure out which interrupt it was, call right handler

• ISR runs. ACKs the interrupt to hardware. Does minimal

possible to handle interrupt. Returns.

• Restore context

12



• Re-enable interrupts

13



Interrupt Sources

• Data Abort – missing memory

• prefetch – trying to fetch next instruction

• swi – syscall

• undefined – emulate missing. why same priority swi and

undefined? swi insn is never undefined

14



Register Contents

• r13 (sp) r14 (lr) r15 (pc) special cased, bank switched

in

• return address. Either next insn, or current insn if has

to be re-executed (a bad memory, redo now paged in)

15



Interrupt Controllers

• Interrupt controllers, map many interrupts to two irq

lines

• irq – low priority, high latency – system timer

• firq – fast, dma transfers?

16



Interrupt Latency

• fastest – nested – ack right away (quiet the hardware)

then re-enable so other interrupts not ignored

• prioritized – ignore interrupts of same or higher while

servicing: higher priority end up w lower latency

• (NMI interrupts, x86)

17



Interrupt Stacks

• irq stacks

• separate from user stacks to avoid buggy code causing

problems

• sp is one of banked regs

18



Vectors

From Table 9.2 of textbook
Exception Mode Vector Table Offset Priority

Reset SVC 0x00 1
Undefined Instruction UND 0x04 6

Software Interrupt SVC 0x08 6
Prefetch Abort ABT 0x0c 5

Data Abort ABT 0x10 2
n/a – 0x14 –
IRQ IRQ 0x18 4
FIQ FIQ 0x1c 3

FIQ can immediately follow w no branch

19



Benefits of an OS

If you have an OS, no need to worry about most of this

unless you are coding it up yourself.

20



DMA

• Direct memory access

• Devices can write directly to memory without going

through the CPU.

Saves a load/store loop on the CPU.

• CPU sets up the transfer, then can do other things.

Often notified of completion by an interrupt

21



Device Firmware

• Devices are their own embedded systems these days.

May even have full CPUs, etc.

• Need to run code. Firmware.

• In ROM? Or upgradable? Why might you want to

upgrade? (bug fixes, economy, etc.)

• Talk about recent USB firmware malware

22


