
ECE 471 – Embedded Systems
Lecture 6

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 September 2015

Announcements

• HW#3 will be posted today

1

What the OS gives you at start

• Registers

• Instruction pointer at beginning

• Stack

• command line arguments, aux, environment variables

• Large contiguous VM space

2

ARM Architecture

• 32-bit

• Load/Store

• Can be Big-Endian or Little-Endian (usually little)

• Fixed instruction width (32-bit, 16-bit THUMB)

(Thumb2 is variable)

• arm32 opcodes typically take three arguments

(Destination, Source, Source)

• Cannot access unaligned memory (optional newer chips)

• Status flag (many instructions can optionally set)

3

• Conditional execution

• Complicated addressing modes

• Many features optional (FPU [except in newer], PMU,

Vector instructions, Java instructions, etc.)

4

Registers

• Has 16 GP registers (more available in supervisor mode)

• r0 - r12 are general purpose

• r11 is sometimes the frame pointer (fp) [iOS uses r7]

• r13 is stack pointer (sp)

• r14 is link register (lr)

• r15 is program counter (pc)

reading r15 usually gives PC+8

• 1 status register (more in system mode).

NZCVQ (Negative, Zero, Carry, oVerflow, Saturate)

5

Low-Level ARM Linux Assembly

6

Kernel Programming ABIs

• OABI – “old” original ABI (arm). Being phased out.

slightly different syscall mechanism, different alignment

restrictions

• EABI – new “embedded” ABI (armel)

• hard float – EABI compiled with ARMv7 and VFP

(vector floating point) support (armhf). Raspberry Pi

(raspbian) is compiled for ARMv6 armhf.

7

System Calls (EABI)

• System call number in r7

• Arguments in r0 - r6

• Call swi 0x0

• System call numbers can be found in

/usr/include/arm-linux-gnueabihf/asm/unistd.h

They are similar to the 32-bit x86 ones.

8

System Calls (OABI)

The previous implementation had the same system call

numbers, but instead of r7 the number was the argument

to swi. This was very slow, as there is no way to

determine that value without having the kernel backtrace

the callstack and disassemble the instruction.

9

Manpage

The easiest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look

for system call documentation (which is type 2).

10

A first ARM assembly program: hello exit

.equ SYSCALL_EXIT , 1

.globl _start

_start:

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in eax

swi 0x0 @ and exit

11

hello exit example

Assembling/Linking using make, running, and checking the

output.

lecture6$ make hello_exit_arm

as -o hello_exit_arm.o hello_exit_arm.s

ld -o hello_exit_arm hello_exit_arm.o

lecture6$./hello_exit_arm

lecture6$ echo $?

5

12

Assembly

• @ is the comment character. # can be used on line

by itself but will confuse assembler if on line with code.

Can also use /* */

• Order is source, destination

• Constant value indicated by # or $

13

Let’s look at our executable

• ls -la ./hello exit arm

Check the size

• readelf -a ./hello exit arm

Look at the ELF executable layout

• objdump --disassemble-all ./hello exit arm

See the machine code we generated

• strace ./hello exit arm

Trace the system calls as they happen.

14

hello world example
.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

mov r0 ,# STDOUT /* stdout */

ldr r1 ,= hello

mov r2 ,#13 @ length

mov r7 ,# SYSCALL_WRITE

swi 0x0

Exit

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number in r7

swi 0x0 @ and exit

.data

hello: .ascii "Hello World !\n"

15

New things to note in hello world

• The fixed-length 32-bit ARM cannot hold a full 32-bit

immediate

• Therefore a 32-bit address cannot be loaded in a single

instruction

• In this case the “=” is used to request the address

be stored in a “literal” pool which can be reached by

PC-offset, with an extra layer of indirection.

16

ARM Assembly Review

17

Floating Point

ARM floating point varies and is often optional.

• various versions of vector floating point unit

• vfp3 has 16 or 32 64-bit registers

• Advanced SIMD – reuses vfp registers

Can see as 16 128-bit regs q0-q15 or 32 64-bit d0-d31

and 32 32-bit s0-s31

• SIMD supports integer, also 16-bit?

• Polynomial?

• FPSCR register (flags)

18

Arithmetic Instructions

Most of these take optional s to set status flag

adc v1 add with carry
add v1 add
rsb v1 reverse subtract (immediate - rX)
rsc v1 reverse subtract with carry
sbc v1 subtract with carry
sub v1 subtract

19

Register Manipulation

mov, movs v1 move register
mvn, mvns v1 move inverted

20

Loading Constants

• In general you can get a 12-bit immediate which is 8

bits of unsigned and 4-bits of even rotate (rotate by

2*value). mov r0, #45

• You can specify you want the assembler to try to make

the immediate for you: ldr r0,=0xff

ldr r0,=label

If it can’t make the immediate value, it will store in

nearby in a literal pool and do a memory read.

21

Extra Shift in ALU instructions

If second source is a register, can optionally shift:

• LSL – Logical shift left

• LSR – Logical shift right

• ASR – Arithmetic shift right

• ROR – Rotate Right (last bit into carry)

• RRX – Rotate Right with Extend

bit zero into C, C into bit 31 (33-bit rotate)

22

• Why no ASL?

• For example:

add r1, r2, r3, lsr #4

r1 = r2 + (r3>>4)

• Another example (what does this do):

add r1, r2, r2, lsl #2

23

Shift Instructions

Implemented via mov with shift on arm32.

asr arith shift right
lsl logical shift left
lsr logical shift right
ror rors – rotate right
rorx rotate right extend: bit 0 into C, C into bit 31

24

Rotate instructions

• Looked in my code, as well as in Hacker’s Delight

• Often used when reversing bits (say, for endian

conversion)

• Often used because shift instructions typically don’t go

through the carry glad, but rotates often do

• Used on x86 to use a 32-bit register as two 16-bit

registers (can quickly swap top and bottom)

25

Shift Example

• Shift example (what does this do):

add r1, r2, r2, lsl #2

• teq vs cmp – teq in general doesn’t change carry flag

• Constant is only 8-bits unsigned, with 4 bits of even

rotate

26

Logic Instructions

and v1 bitwise and
bfc ?? bitfield clear, clear bits in reg
bfi ?? bitfield insert
bic v1 bitfield clear: and with negated value
clz v7 count leading zeros
eor v1 exclusive or (name shows 6502 heritage)
orn v6 or not
orr v1 bitwise or

27

Comparison Instructions

Updates status flag, no need for s

cmp v1 compare (subtract but discard result)
cmn v1 compare negative (add)
teq v1 tests if two values equal (xor) (preserves carry)
tst v1 test (and)

28

Multiply Instructions

Fast multipliers are optional

For 64-bit results,

mla v2 multiply two registers, add in a third (4 arguments)
mul v2 multiply two registers, only least sig 32bit saved

smlal v3M 32x32+64 = 64-bit (result and add source, reg pair rdhi,rdlo)
smull v3M 32x32 = 64-bit
umlal v3M unsigned 32x32+64 = 64-bit
umull v3M unsigned 32x32=64-bit

29

Control-Flow Instructions

Can use all of the condition code prefixes.

Branch to a label, which is +/- 32MB from PC

b v1 branch
bl v1 branch and link (return value stored in lr)
bx v4t branch to offset or reg, possible THUMB switch
blx v5 branch and link to register, with possible THUMB switch

mov pc,lr v1 return from a link

30

Load/Store Instructions

ldr v1 load register
ldrb v1 load register byte
ldrd v5 load double, into consecutive registers (Rd even)
ldrh v1 load register halfword, zero extends
ldrsb v1 load register signed byte, sign-extends
ldrsh v1 load register halfword, sign-extends
str v1 store register

strb v1 store byte
strd v5 store double
strh v1 store halfword

31

Addressing Modes

• ldrb r1, [r2] @ register

• ldrb r1, [r2,#20] @ register/offset

• ldrb r1, [r2,+r3] @ register + register

• ldrb r1, [r2,-r3] @ register - register

• ldrb r1, [r2,r3, LSL #2] @ register +/- register,

shift

32

• ldrb r1, [r2, #20]! @ pre-index. Load from r2+20

then write back

• ldrb r1, [r2, r3]! @ pre-index. register

• ldrb r1, [r2, r3, LSL #4]! @ pre-index. shift

• ldrb r1, [r2],#+1 @ post-index. load, then add value

to r2

• ldrb r1, [r2],r3 @ post-index register

• ldrb r1, [r2],r3, LSL #4 @ post-index shift

33

Load/Store multiple (stack?)

In general, no interrupt during instruction so long

instruction can be bad in embedded

Some of these have been deprecated on newer processors

• ldm – load multiple memory locations into consecutive

registers

• stm – store multiple, can be used like a PUSH instruction

• push and pop are thumb equivelent

34

Can have address mode and ! (update source):

• IA – increment after (start at Rn)

• IB – increment before (start at Rn+4)

• DA – decrement after

• DB – decrement before

Can have empty/full. Full means SP points to a used

location, Empty means it is empty:

• FA – Full ascending

35

• FD – Full descending

• EA – Empty ascending

• ED – Empty descending

Recent machines use the ”ARM-Thumb Proc Call

Standard” which says a stack is Full/Descending, so use

LDMFD/STMFD.

What does stm SP!, {r0,lr} then ldm SP!,

{r0,PC,pc} do?

36

System Instructions

• svc, swi – software interrupt

takes immediate, but ignored.

• mrs, msr – copy to/from status register. use to clear

interrupts? Can only set flags from userspace

• cdp – perform coprocessor operation

• mrc, mcr – move data to/from coprocessor

• ldc, stc – load/store to coprocessor from memory

37

Co-processor 15 is the system control coprocessor and is

used to configure the processor. Co-processor 14 is the

debugger 11 is double-precision floating point 10 is single-

precision fp as well as VFP/SIMD control 0-7 vendor

specific

38

Other Instructions

• swp – atomic swap value between register and memory

(deprecated armv7)

• ldrex/strex – atomic load/store (armv6)

• wfe/sev – armv7 low-power spinlocks

• pli/pld – preload instructions/data

• dmb/dsb – memory barriers

39

Pseudo-Instructions

adr add immediate to PC, store address in reg
nop no-operation

40

Prefixed instructions

Most instructions can be prefixed with condition codes:

EQ, NE (equal) Z==1/Z==0
MI, PL (minus/plus) N==1/N==0
HI, LS (unsigned higher/lower) C==1&Z==0/C==0|Z==1
GE, LT (greaterequal/lessthan) N==V/N!=V
GT, LE (greaterthan, lessthan) N==V&Z==0/N!=V|Z==1

CS,HS, CC,LO (carry set,higher or same/clear) C==1,C==0
VS, VC (overflow set / clear) V==1,V==0

AL (always) (this is the default)

41

Setting Flags

• add r1,r2,r3

• adds r1,r2,r3 – set condition flag

• addeqs r1,r2,r3 – set condition flag and prefix

compiler and disassembler like addseq, GNU as doesn’t?

42

Conditional Execution

if (x == 1)

a+=2;

else

b-=2;

cmp r1, #5

addeq r2,r2,#2

subne r3,r3,#2

43

Fancy ARMv6

• mla – multiply/accumulate (armv6)

• mls – multiply and subtract

• pkh – pack halfword (armv6)

• qadd, qsub, etc. – saturating add/sub (armv6)

• rbit – reverse bit order (armv6)

• rbyte – reverse byte order (armv6)

• rev16, revsh – reverse halfwords (armv6)

• sadd16 – do two 16-bit signed adds (armv6)

• sadd8 – do 4 8-bit signed adds (armv6)

44

• sasx – (armv6)

• sbfx – signed bit field extract (armv6)

• sdiv – signed divide (only armv7-R)

• udiv – unsigned divide (armv7-R only)

• sel – select bytes based on flag (armv6)

• sm* – signed multiply/accumulate

• setend – set endianess (armv6)

• sxtb – sign extend byte (armv6)

• tbb – table branch byte, jump table (armv6)

• teq – test equivalence (armv6)

• u* – unsigned partial word instructions

45

ARM Instruction Set Encodings

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

◦ STM32L only has THUMB2

◦ Original Raspberry Pis do not have THUMB2

◦ Raspberry Pi 2 does have THUMB2

• THUMB-EE – some extensions for running in JIT

runtime

• AARCH64 – 64 bit. Relatively new.

46

Recall the ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

47

THUMB

• Most instructions length 16-bit (a few 32-bit)

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• No prefix/conditional execution

• Only two arguments to opcodes

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

48

• Limited addressing modes: [rn,rm], [rn,#imm],

[pc|sp,#imm]

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• new push/pop instructions (subset of ldm/stm), neg (to

negate), asr,lsl,lsr,ror, bic (logic bit clear)

49

THUMB/ARM interworking

• See print string armthumb.s

• BX/BLX instruction to switch mode.

If target is a label, always switchmode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can also switch modes with ldrm, ldm, or pop with PC

as a destination

(on armv7 can enter with ALU op with PC destination)

• Can use .thumb directive, .arm for 32-bit.

50

THUMB-2

• Extension of THUMB to have both 16-bit and 32-bit

instructions

• 32-bit instructions not standard 32-bit ARM instructions.

It’s a new encoding that allows an instruction to be 32-

bit if needed.

• Most 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

• rsc (reverse subtract with carry) removed

51

• Shifts in ALU instructions are by constant, cannot shift

by register like in arm32

• THUMB-2 code can assemble to either ARM-32 or

THUMB2

The assembly language is compatible.

Common code can be written and output changed at

time of assembly.

• Instructions have “wide” and “narrow” encoding.

Can force this (add.w vs add.n).

• Need to properly indicate “s” (set flags).

On regular THUMB this is assumed.

52

THUMB-2 Coding

• See test thumb2.s

• Use .syntax unified at beginning of code

• Use .arm or .thumb to specify mode

53

New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movt – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz – compare and branch if zero; only jumps forward

54

Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

0100 -- 1bcdedfh 00000000 00000000 00000000

...

1111 -- 00000000 00000000 00000001 bcdefgh0

55

Compiler

• Original RASPBERRY PI DOES NOT SUPPORT

THUMB2

• gcc -S hello world.c

By default is arm32

• gcc -S -march=armv5t -mthumb hello world.c

Creates THUMB (won’t work on Rapberry Pi due to

HARDFP arch)

• -mthumb -march=armv7-a Creates THUMB2

56

IT (If/Then) Instruction

• Allows limited conditional execution in THUMB-2 mode.

• The directive is optional (and ignored in ARM32)

the assembler can (in-theory) auto-generate the IT

instruction

• Limit of 4 instructions

57

Example Code

it cc

addcc r1,r2

itete cc

addcc r1,r2

addcs r1,r2

addcc r1,r2

addcs r1,r2

58

ll Example Code

ittt cs @ If CS Then Next plus CS for next 3

discrete_char:

ldrbcs r4,[r3] @ load a byte

addcs r3,#1 @ increment pointer

movcs r6,#1 @ we set r6 to one so byte

bcs.n store_byte @ and store it

offset_length:

59

AARCH64

• 32-bit fixed instruction encoding

• 31 64-bit GP registers (x0-x30), zero register (x30)

• PC is not a GP register

• only branches conditional

• no load/store multiple

• No thumb

60

Code Density

• Overview from my ll ICCD’09 paper

• Show code density for variety of architectures, recently

added Thumb-2 support.

• Shows overall size, though not a fair comparison due to

operating system differences on non-Linux machines

61

Code Density – overall

ia
64

al
ph

a

R
iS

C

pa
-ri

sc

sp
ar

c

m
ic
ro

bl
az

e
m

ip
s

m
88

k

ar
m

.e
ab

i

Pow
er

PC
65

02

ar
m

64
s3

90

x8
6_

64

x8
6_

x3
2

sh
3

m
68

k
i3
86 va

x

TH
U
M

B

Thu
m

b-
2

av
r3

2

cr
is
v3

2
z8

0

pd
p-

11
80

86
0

512

1024

1536

2048

2560

3072

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

62

lzss compression

• Printing routine uses lzss compression

• Might be more representative of potential code density

63

Code Density – lzss

R
iS

C
ia
64

al
ph

a

pa
-ri

sc
m

ip
s

sp
ar

c

m
ic
ro

bl
az

e
65

02

m
88

k
s3

90

ar
m

.e
ab

i

Pow
er

PC

pd
p-

11 z8
0

ar
m

64

m
68

k

av
r3

2
sh

3

TH
U
M

B

Thu
m

b-
2

va
x

x8
6_

64

x8
6_

x3
2

cr
is
v3

2
i3
86

80
86

0

64

128

192

256

320

384

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

64

Put string example

.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

ldr r1 ,= hello

bl print_string @ Print Hello World

ldr r1 ,= mystery

bl print_string @

ldr r1 ,= goodbye

bl print_string /* Print Goodbye */

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in eax

swi 0x0 @ and exit

65

#====================

print string

#====================

Null -terminated string to print pointed to by r1

r1 is trashed by this routine

print_string:

push {r0 ,r2 ,r7 ,r10} @ Save r0 ,r2 ,r7 ,r10 on stack

mov r2 ,#0 @ Clear Count

count_loop:

add r2 ,r2 ,#1 @ increment count

ldrb r10 ,[r1 ,r2] @ load byte from address r1+r2

cmp r10 ,#0 @ Compare against 0

bne count_loop @ if not 0, loop

mov r0 ,# STDOUT @ Print to stdout

mov r7 ,# SYSCALL_WRITE @ Load syscall number

swi 0x0 @ System call

pop {r0 ,r2 ,r7 ,r10} @ pop r0 ,r2 ,r7 ,r10 from stack

mov pc ,lr @ Return to address stored in

66

@ Link register

.data

hello: .string "Hello World !\n" @ includes null at end

mystery: .byte 63,0x3f ,63,10,0 @ mystery string

goodbye: .string "Goodbye !\n" @ includes null at end

67

Clarification of Assembler Syntax

• @ is the comment character. # can be used on line

by itself but will confuse assembler if on line with code.

Can also use /* */

• Constant value indicated by # or $

• Optionally put % in front of register name

68

