
ECE 471 – Embedded Systems
Lecture 7

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

22 September 2015

Announcements

• How is HW#3 going?

• Does everyone have access to a breadboard and jumper

wires?

• How about LED, switch, and suitable resistors?

• Just taking stock of what’s needed for HW#4.

1

HW2 Review

• Everyone seems to be accessing the Pi OK, even split

between network and usb usages.

One benefit of a pi, is lots of people using it so google

very helpful.

• Be sure to follow directions!

• Most C code OK.

Be sure if it says print 20 lines that you do, not 21.

Colors seem not to be a problem.

Declaring int in a for statement is C99/C++, be sure

2

your code compiles without errors and warnings.

• more info on ls. Looking for man. “info” or ls --help

• ls -a shows hidden files. Hidden files on UNIX

• Linker, ld.

You can use “gcc” to link, but it is calling the linker

(and also the assembler) behind your back.

chmod +x does make appear executable, but if file isn’t

an ELF file it won’t do what you think it might. (go

over filesystem bits?)

3

HW3 Notes

• Asking for disassembly?

• Confusing code. Reverse engineering experience. Block

of code from one of my older projects when I wasn’t

quite as good at ARM assembly.

• Just the print number code, the parts with no comments.

No need to explain what the divby10 is doing.

• What does .lcomm do? Reserves region in the BSS.

• Mention strace to see the syscalls

• Can disassemble code with objdump --disassemble-all

4

• gdb debugger

◦ gdb ./hello world.c

◦ run – to run program

◦ bt – show backtrace

◦ disassem – disassemble

◦ info regis – show register values

◦ More advanced features like single-step, breakpoint,

etc. also available.

5

Let’s look at our executable

• ls -la ./hello exit arm

Check the size

• readelf -a ./hello exit arm

Look at the ELF executable layout

• objdump --disassemble-all ./hello exit arm

See the machine code we generated

• strace ./hello exit arm

Trace the system calls as they happen.

6

Arithmetic Instructions

Most of these take optional s to set status flag

adc v1 add with carry
add v1 add
rsb v1 reverse subtract (immediate - rX)
rsc v1 reverse subtract with carry
sbc v1 subtract with carry
sub v1 subtract

7

Register Manipulation

mov, movs v1 move register
mvn, mvns v1 move inverted

8

Loading Constants

• In general you can get a 12-bit immediate which is 8

bits of unsigned and 4-bits of even rotate (rotate by

2*value). mov r0, #45

• You can specify you want the assembler to try to make

the immediate for you: ldr r0,=0xff

ldr r0,=label

If it can’t make the immediate value, it will store in

nearby in a literal pool and do a memory read.

9

Extra Shift in ALU instructions

If second source is a register, can optionally shift:

• LSL – Logical shift left

• LSR – Logical shift right

• ASR – Arithmetic shift right

• ROR – Rotate Right (last bit into carry)

• RRX – Rotate Right with Extend

bit zero into C, C into bit 31 (33-bit rotate)

10

• Why no ASL?

• For example:

add r1, r2, r3, lsr #4

r1 = r2 + (r3>>4)

• Another example (what does this do):

add r1, r2, r2, lsl #2

11

Shift Instructions

Implemented via mov with shift on arm32.

asr arith shift right
lsl logical shift left
lsr logical shift right
ror rors – rotate right
rorx rotate right extend: bit 0 into C, C into bit 31

12

Rotate instructions

• Looked in my code, as well as in Hacker’s Delight

• Often used when reversing bits (say, for endian

conversion)

• Often used because shift instructions typically don’t go

through the carry flag, but rotates often do

• Used on x86 to use a 32-bit register as two 16-bit

registers (can quickly swap top and bottom)

13

Shift Example

• Shift example (what does this do):

add r1, r2, r2, lsl #2

• teq vs cmp – teq in general doesn’t change carry flag

• Constant is only 8-bits unsigned, with 4 bits of even

rotate

14

Logic Instructions

and v1 bitwise and
bfc ?? bitfield clear, clear bits in reg
bfi ?? bitfield insert
bic v1 bitfield clear: and with negated value
clz v7 count leading zeros
eor v1 exclusive or (name shows 6502 heritage)
orn v6 or not
orr v1 bitwise or

15

Comparison Instructions

Updates status flag, no need for s

cmp v1 compare (subtract but discard result)
cmn v1 compare negative (add)
teq v1 tests if two values equal (xor) (preserves carry)
tst v1 test (and)

16

Multiply Instructions

Fast multipliers are optional

For 64-bit results,

mla v2 multiply two registers, add in a third (4 arguments)
mul v2 multiply two registers, only least sig 32bit saved

smlal v3M 32x32+64 = 64-bit (result and add source, reg pair rdhi,rdlo)
smull v3M 32x32 = 64-bit
umlal v3M unsigned 32x32+64 = 64-bit
umull v3M unsigned 32x32=64-bit

17

Control-Flow Instructions

Can use all of the condition code prefixes.

Branch to a label, which is +/- 32MB from PC

b v1 branch
bl v1 branch and link (return value stored in lr)
bx v4t branch to offset or reg, possible THUMB switch
blx v5 branch and link to register, with possible THUMB switch

mov pc,lr v1 return from a link

18

Load/Store Instructions

ldr v1 load register
ldrb v1 load register byte
ldrd v5 load double, into consecutive registers (Rd even)
ldrh v1 load register halfword, zero extends
ldrsb v1 load register signed byte, sign-extends
ldrsh v1 load register halfword, sign-extends
str v1 store register

strb v1 store byte
strd v5 store double
strh v1 store halfword

19

Addressing Modes

• ldrb r1, [r2] @ register

• ldrb r1, [r2,#20] @ register/offset

• ldrb r1, [r2,+r3] @ register + register

• ldrb r1, [r2,-r3] @ register - register

• ldrb r1, [r2,r3, LSL #2] @ register +/- register,

shift

20

• ldrb r1, [r2, #20]! @ pre-index. Load from r2+20

then write back

• ldrb r1, [r2, r3]! @ pre-index. register

• ldrb r1, [r2, r3, LSL #4]! @ pre-index. shift

• ldrb r1, [r2],#+1 @ post-index. load, then add value

to r2

• ldrb r1, [r2],r3 @ post-index register

• ldrb r1, [r2],r3, LSL #4 @ post-index shift

21

Load/Store multiple (stack?)

In general, no interrupt during instruction so long

instruction can be bad in embedded

Some of these have been deprecated on newer processors

• ldm – load multiple memory locations into consecutive

registers

• stm – store multiple, can be used like a PUSH instruction

• push and pop are thumb equivalent

22

Can have address mode and ! (update source):

• IA – increment after (start at Rn)

• IB – increment before (start at Rn+4)

• DA – decrement after

• DB – decrement before

Can have empty/full. Full means SP points to a used

location, Empty means it is empty:

• FA – Full ascending

23

• FD – Full descending

• EA – Empty ascending

• ED – Empty descending

Recent machines use the ”ARM-Thumb Proc Call

Standard” which says a stack is Full/Descending, so use

LDMFD/STMFD.

What does stm SP!, {r0,lr} then ldm SP!,

{r0,PC,pc} do?

24

System Instructions

• svc, swi – software interrupt

takes immediate, but ignored.

• mrs, msr – copy to/from status register. use to clear

interrupts? Can only set flags from userspace

• cdp – perform coprocessor operation

• mrc, mcr – move data to/from coprocessor

• ldc, stc – load/store to coprocessor from memory

25

Co-processor 15 is the system control coprocessor and is

used to configure the processor. Co-processor 14 is the

debugger 11 is double-precision floating point 10 is single-

precision fp as well as VFP/SIMD control 0-7 vendor

specific

26

Other Instructions

• swp – atomic swap value between register and memory

(deprecated armv7)

• ldrex/strex – atomic load/store (armv6)

• wfe/sev – armv7 low-power spinlocks

• pli/pld – preload instructions/data

• dmb/dsb – memory barriers

27

Pseudo-Instructions

adr add immediate to PC, store address in reg
nop no-operation

28

Prefixed instructions

Most instructions can be prefixed with condition codes:

EQ, NE (equal) Z==1/Z==0
MI, PL (minus/plus) N==1/N==0
HI, LS (unsigned higher/lower) C==1&Z==0/C==0|Z==1
GE, LT (greaterequal/lessthan) N==V/N!=V
GT, LE (greaterthan, lessthan) N==V&Z==0/N!=V|Z==1

CS,HS, CC,LO (carry set,higher or same/clear) C==1,C==0
VS, VC (overflow set / clear) V==1,V==0

AL (always) (this is the default)

29

Setting Flags

• add r1,r2,r3

• adds r1,r2,r3 – set condition flag

• addeqs r1,r2,r3 – set condition flag and prefix

compiler and disassembler like addseq, GNU as doesn’t?

30

Conditional Execution

if (x == 1)

a+=2;

else

b-=2;

cmp r1, #5

addeq r2,r2,#2

subne r3,r3,#2

31

Fancy ARMv6

• mla – multiply/accumulate (armv6)

• mls – multiply and subtract

• pkh – pack halfword (armv6)

• qadd, qsub, etc. – saturating add/sub (armv6)

• rbit – reverse bit order (armv6)

• rbyte – reverse byte order (armv6)

• rev16, revsh – reverse halfwords (armv6)

• sadd16 – do two 16-bit signed adds (armv6)

• sadd8 – do 4 8-bit signed adds (armv6)

32

• sasx – (armv6)

• sbfx – signed bit field extract (armv6)

• sdiv – signed divide (only armv7-R)

• udiv – unsigned divide (armv7-R only)

• sel – select bytes based on flag (armv6)

• sm* – signed multiply/accumulate

• setend – set endianess (armv6)

• sxtb – sign extend byte (armv6)

• tbb – table branch byte, jump table (armv6)

• teq – test equivalence (armv6)

• u* – unsigned partial word instructions

33

ARM Instruction Set Encodings

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

◦ STM32L only has THUMB2

◦ Original Raspberry Pis do not have THUMB2

◦ Raspberry Pi 2 does have THUMB2

• THUMB-EE – some extensions for running in JIT

runtime

• AARCH64 – 64 bit. Relatively new.

34

Recall the ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

35

THUMB

• Most instructions length 16-bit (a few 32-bit)

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• No prefix/conditional execution

• Only two arguments to opcodes

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

36

• Limited addressing modes: [rn,rm], [rn,#imm],

[pc|sp,#imm]

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• new push/pop instructions (subset of ldm/stm), neg (to

negate), asr,lsl,lsr,ror, bic (logic bit clear)

37

THUMB/ARM interworking

• See print string armthumb.s

• BX/BLX instruction to switch mode.

If target is a label, always switchmode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can also switch modes with ldrm, ldm, or pop with PC

as a destination

(on armv7 can enter with ALU op with PC destination)

• Can use .thumb directive, .arm for 32-bit.

38

