
ECE 471 – Embedded Systems
Lecture 8

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 September 2015



Announcements

• HW#4 will be posted soon

• Will require an LED, a breadboard, and some jumper

wires. I handed out some GPIO wires in class.

1



THUMB-2 Wrapup

• Extension of THUMB to have both 16-bit and 32-bit

instructions

• 32-bit instructions not standard 32-bit ARM instructions.

It’s a new encoding that allows an instruction to be 32-

bit if needed.

• Most 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

• rsc (reverse subtract with carry) removed

2



• Shifts in ALU instructions are by constant, cannot shift

by register like in arm32

• THUMB-2 code can assemble to either ARM-32 or

THUMB2

The assembly language is compatible.

Common code can be written and output changed at

time of assembly.

• Instructions have “wide” and “narrow” encoding.

Can force this (add.w vs add.n).

• Need to properly indicate “s” (set flags).

On regular THUMB this is assumed.

3



THUMB-2 Coding

• See test thumb2.s

• Use .syntax unified at beginning of code

• Use .arm or .thumb to specify mode

4



New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movt – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz – compare and branch if zero; only jumps forward

5



Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

0100 -- 1bcdedfh 00000000 00000000 00000000

...

1111 -- 00000000 00000000 00000001 bcdefgh0

6



Compiler

• Original RASPBERRY PI DOES NOT SUPPORT

THUMB2

• gcc -S hello world.c

By default is arm32

• gcc -S -march=armv5t -mthumb hello world.c

Creates THUMB (won’t work on Raspberry Pi due to

HARDFP arch)

• -mthumb -march=armv7-a Creates THUMB2

7



IT (If/Then) Instruction

• Allows limited conditional execution in THUMB-2 mode.

• The directive is optional (and ignored in ARM32)

the assembler can (in-theory) auto-generate the IT

instruction

• Limit of 4 instructions

8



Example Code

it cc

addcc r1,r2

itete cc

addcc r1,r2

addcs r1,r2

addcc r1,r2

addcs r1,r2

9



ll Example Code

ittt cs @ If CS Then Next plus CS for next 3

discrete_char:

ldrbcs r4,[r3] @ load a byte

addcs r3,#1 @ increment pointer

movcs r6,#1 @ we set r6 to one so byte

bcs.n store_byte @ and store it

offset_length:

10



AARCH64

• 32-bit fixed instruction encoding

• 31 64-bit GP registers (x0-x30), zero register (x30)

• PC is not a GP register

• only branches conditional

• no load/store multiple

• No thumb

11



Code Density

• Overview from my ll ICCD’09 paper

• Show code density for variety of architectures, recently

added Thumb-2 support.

• Shows overall size, though not a fair comparison due to

operating system differences on non-Linux machines

12



Code Density – overall

ia
64

al
ph

a

R
iS

C

pa
-ri

sc

sp
ar

c

m
ic
ro

bl
az

e
m

ip
s

m
88

k

Pow
er

PC

ar
m

.e
ab

i

65
02

ar
m

64
s3

90

x8
6_

64

x8
6_

x3
2

sh
3

m
68

k
i3
86 va

x

TH
U
M

B
18

02

av
r3

2

Thu
m

b-
2

cr
is
v3

2
z8

0

pd
p-

11
80

86
0

512

1024

1536

2048

2560

3072

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

13



lzss compression

• Printing routine uses lzss compression

• Might be more representative of potential code density

14



Code Density – lzss

R
iS

C
ia
64

al
ph

a

pa
-ri

sc
m

ip
s

sp
ar

c

m
ic
ro

bl
az

e
65

02

m
88

k
s3

90

ar
m

.e
ab

i

Pow
er

PC

pd
p-

11 z8
0

ar
m

64

m
68

k

av
r3

2
18

02 sh
3

TH
U
M

B

Thu
m

b-
2

va
x

x8
6_

64

x8
6_

x3
2

cr
is
v3

2
i3
86

80
86

0

64

128

192

256

320

384

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

15



Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards

in ECE271.

• Compile code

• Prepare for upload (hexbin?)

• Upload into FLASH

• Boots to offset

16



• Setup, flat memory (usually), stack at top, code near

bottom, IRQ vectors

• Handle Interrupts

• Must do I/O directly (no drivers)

Although if lucky, can find existing code.

• Code is specific to the hardware you are on

17



Instead, one can use an Operating System

18



Why Use an Operating System?

• Provides Layers of Abstraction

– Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

– Abstract software: with VM get linear address space,

same system calls on all systems

– Abstraction comes at a cost. Higher overhead,

unknown timing

19



• Multi-tasking / Multi-user

• Security, permissions (Linus dial out onto /dev/hda)

• Common code in kernel and libraries, no need to re-

invent

20



What’s included with an OS

• kernel / drivers – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.

21



Brief Overview of the Raspberry Pi Board

Model B

Camera

Pin1 Pin2

Composite

Audio

HDMI

Power

Pin25 Pin26

Ethernet

USB

Model B+

Audio/Video

Pin1 Pin2

Ethernet

USB USB

Power

HDMI

22



Rasp-pi Header

• Model B has 17 GPIOs (out of 26 pins), B+ has 9 more

(out of 40)

• 3.3V signaling logic. Need level shifter if want 5V or

1.8V

• Linux by default configures some for other purposes

(serial, i2c, SPI)

23



Rasp-pi Header
3.3V 1 2 5V

GPIO2 (SDA) 3 4 5V
GPIO3 (SCL) 5 6 GND

GPIO4 7 8 GPIO14 (UART TXD)
GND 9 10 GPIO15 (UART RXD)

GPIO17 11 12 GPIO18 (PCM CLK)
GPIO27 13 14 GND
GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24
GPIO10 (MOSI) 19 20 GND

GPIO9 (MISO) 21 22 GPIO25
GPIO11 (SCLK) 23 24 GPIO8 (CE0)

GND 25 26 GPIO7 (CE1)

ID SD (EEPROM) 27 28 ID SC (EEPROM)
GPIO5 29 30 GND
GPIO6 31 32 GPIO12

GPIO13 33 34 GND
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20

GND 39 40 GPIO21

24



How you enable GPIO on STM32L

A lot of read/modify/write instructions to read current

register values and then to shift/mask to write out updated

bitfields.

• Enable GPIO Clock

• Set output mode for GPIO.

• Set GPIO type.

• Set pin clock speed.

• Set pin pull-up/pull-down

• Set or clear GPIO pin.

25



How you enable on BCM2835 (Rasp-pi)

• Documented in BCM2835 ARM Peripherals Manual

• 53 GPIOs (not all available on board)

• Similar to how done on STM32L... but we have an

operating system

26



Letting the OS handle it for you

27



Linux GPIO interface

• Documentation/gpio/sysfs.txt

• sysfs and string based

28



A few low-level Linux Coding Instructions

29



Enable a GPIO for use

To enable GPIO 17:

write “17” to /sys/class/gpio/export

To disable GPIO 17:

write “17” to /sys/class/gpio/unexport

char buffer [10];

fd=open("/sys/class/gpio/export",O_WRONLY );

if (fd <0) fprintf(stderr ,"\tError enabling\n");

strcpy(buffer ,"17");

write(fd ,buffer ,2);

close(fd);

30



Set GPIO Direction

To make GPIO 17 an input:

write “in” to /sys/class/gpio/gpio17/direction

To make GPIO 17 an output:

write “out” to /sys/class/gpio/gpio17/direction

fd=open("/sys/class/gpio/gpio17/direction",O_WRONLY );

if (fd <0) fprintf(stderr ,"Error!\n");

write(fd ,"in" ,2);

close(fd);

31



Read/Write GPIO Value

To read value of GPIO 17:

read /sys/class/gpio/gpio17/value

To write value of GPIO 17:

write /sys/class/gpio/gpio17/value

fd=open("/sys/class/gpio/gpio17/value",O_WRONLY );

if (fd <0) fprintf(stderr ,"Error writing !\n");

write(fd ,"1" ,1);

close(fd);

Note, if reading and you do not close after read you will

have to rewind using lseek(fd,0,SEEK SET); after your

32



read.

33



Delay

• Busy delay (like in 271).

for(i=0;i<1000000;i++);

Harder to do in C. Why?

Compiler optimizes away.

• usleep() puts process to sleep for a number of

microseconds. But can have issues if want exact delay.

Why? OS potentially context switches every 100ms.

• Other ways to implement: Set up PWM? Timers?

34



Implementations

• Busy loop. Bad, burns CPU / power

• usleep(). But can take a while to respond.

• Interrupt when ready! poll()

35



GPIO Interrupts on Linux

May need a recent version of Raspbian.

First write ”rising”, ”falling”, or ”both” to

/sys/class/gpio/gpio17/edge.

Then open and poll /sys/class/gpio/gpio17/value.
struct pollfd fds;

int result;

fd=open("/sys/class/gpio/gpio18/value",O_RDONLY );

fds.fd=fd;

fds.events=POLLPRI|POLLERR;

while (1) {

result=poll(&fds ,1, -1);

if (result <0) printf("Error!\n");

lseek(fd ,0,SEEK_SET );

read(fd,buffer ,1); }

36



Debouncing!

• Pull-up / Pull-down resistor. Why?

• Noisy switches, have to debounce

• Manual, no built-in debounce like on STM32L

37



Why Use an Operating System?

• Provides Layers of Abstraction

– Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

– Abstract software: with VM get linear address space,

same system calls on all systems

– Abstraction comes at a cost. Higher overhead,

unknown timing

38



• Multi-tasking / Multi-user

• Security, permissions (Linus dial out onto /dev/hda)

• Common code in kernel and libraries, no need to re-

invent

39



What’s included with an OS

• kernel / drivers – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.

40


