ECE 471 — Embedded Systems
Lecture 8

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 September 2015

Announcements

e HW+#4 will be posted soon

e Will require an LED, a breadboard, and some jumper
wires. | handed out some GPIO wires in class.

THUMB-2 Wrapup

e Extension of THUMB to have both 16-bit and 32-bit

Instructions

e 32-bit instructions not standard 32-bit ARM instructions.
It's a new encoding that allows an instruction to be 32-

bit if needed.
e Most 32-bit ARM instructions have 32-bit

HUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

e rsc (reverse subtract with carry) removed

e Shifts in ALU instructions are by constant, cannot shift
by register like in arm32

e THUMB-2 code can assemble to either ARM-32 or

HUMB2

ne assembly language is compatible.

Common code can be written and output changed at

time of assembly.

e Instructions have “wide’ and “narrow” encoding.
Can force this (add.w vs add.n).

e Need to properly indicate “s” (set flags).
On regular THUMB this is assumed.

-y 3

THUMB-2 Coding

e See test_thumb2.s
e Use .syntax unified at beginning of code

e Use .arm or .thumb to specify mode

New THUMB-2 Instructions

e BFI — bit field insert

e RBIT — reverse bits

e movw/movt — 16 bit immediate loads
e [B — table branch

o IT (if/then)

e cbz — compare and branch if zero; only jumps forward

Thumb-2 12-bit immediates

top 4 bits 0000 --
0001 -—-
0010 --
0011 --
0100 --

1111 —-

00000000
00000000
abcdefgh
abcdefgh
1bcdedfh

00000000

00000000
abcdefgh
00000000
abcdefgh
00000000

00000000

00000000
00000000
abcdefgh
abcdefgh
00000000

00000001

abcdefgh
abcdefgh
00000000
abcdefgh
00000000

bcdefghO

Compiler

e Original RASPBERRY PI DOES NOT SUPPORT
THUMB?2

e gcc -5 hello_world.c
By default is arm32

e gcc -5 —march=armvbt -mthumb hello_world.c
Creates THUMB (won’t work on Raspberry Pi due to
HARDFP arch)

e —-mthumb -march=armv7-a Creates THUMB?2

-y 7

IT (If/Then) Instruction

e Allows limited conditional execution in THUMB-2 mode.

e The directive is optional (and ignored in ARM32)
the assembler can (in-theory) auto-generate the IT
Instruction

e Limit of 4 instructions

1t cc
addcc

itete
addcc
addcs
addcc
addcs

Example Code

rl,r2

CC

rl,r2
rl,r2
rl,r2
rl,r2

11 Example Code

ittt cs @ If CS Then Next plus CS for next 3
discrete_char:

ldrbcs 4, [r3] @ load a byte
addcs r3,#1 @ increment pointer
movcs r6,#1 @ we set r6 to one so byte

bcs.n store_byte @ and store it
offset_length:

10

AARCHO64

e 32-bit fixed instruction encoding

e 31 64-bit GP registers (x0-x30), zero register (x30)
e PC is not a GP register

e only branches conditional

e no load/store multiple

e No thumb

11

Code Density

e Overview from my 11 ICCD'09 paper

e Show code density for variety of architectures, recently
added Thumb-2 support.

e Shows overall size, though not a fair comparison due to
operating system differences on non-Linux machines

/Y 12

Code Density — overall

/| |W
=== RISC
= CISC
=== cmbedded
mmm 8/16-bit

5121
0_
X @ 0 L O 2.0 N0 A >N XA D NO FRX DD AVAN N 0
XX EC N LR LXFT LN LD O DD @R OO NP
CRLFE LTSS PP P oy 280 NI S VS
> Q’b 6\(}60 @Qo$ (bé(\ > _\‘_b @Q’/ N\ &Qs 'b’@&Q &S Qb

13

lzss compression

e Printing routine uses lzss compression

e Might be more representative of potential code density

-y 14

Code Density — lzss

V| |W

=== RISC

= CISC

=== cmbedded
mmm 8/16-bit

15

Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards
in ECE271.

e Compile code
e Prepare for upload (hexbin?)

e Upload into FLASH

e Boots to offset

-y 16

e Setup, flat memory (usually), stack at top, code near
bottom, IRQ vectors

e Handle Interrupts

e Must do I/O directly (no drivers)
Although if lucky, can find existing code.

e Code is specific to the hardware you are on

-y 17

Instead, one can use an Operating System

-y 18

Why Use an Operating System?

e Provides Layers of Abstraction

— Abstract hardware: hide hardware differences. same
hardware interface for classes of hardware (things like
video cameras, disks, keyboards, etc) despite differing
Implementation details

— Abstract software: with VM get linear address space,
same system calls on all systems

— Abstraction comes at a cost. Higher overhead,
unknown timing

-y 19

e Multi-tasking / Multi-user
e Security, permissions (Linus dial out onto /dev/hda)

e Common code in kernel and libraries, no need to re-
Invent

-y 20

What'’s included with an OS

e kernel / drivers — Linux definition
e also system libraries — Solaris definition

e low-level utils / software / GUI — Windows definition
Web Browser included?

e Linux usually makes distinction between the OS Kernel
and distribution. OSX/Windows usually doesn't.

/Y 21

Brief Overview of the Raspberry Pi Board

Model B Model B+

Power Pin1 Pin2 Pin1 Pin2

P

Y 22

Rasp-pi Header

e Model B has 17 GPIOs (out of 26 pins), B+ has 9 more
(out of 40)

e 3.3V signaling logic. Need level shifter if want 5V or
1.8V

e Linux by default configures some for other purposes
(serial, i2c, SPI)

/Y 23

Rasp-pi Header

s 1
GPIO2 (SDA) | 3 | 4
GPIO3 (SCL) | 5 | 6
GPIO4 | 7 | 8 | GPIO14 (UART_TXD)
| GNDT 9 | 10 | GPIO15 (UART_RXD)
GPIO17 | 11 | 12 | GPIO18 (PCM_CLK)
GPIO27 | 13 | 14
GPIO22 | 15 | 16 | GPIO23
18 | GPI1024
20
22
24
26
ID_SD (EEPROM) | 27 | 28 [ID_SC (EEPROM)
GPi05 | 29 | 30 [NGNDNNEEEG—
GPIO6 | 31 | 32 | GPIO12
GPI013 | 33 | 34 |GNDIIEEG—
GPIO19 | 35 | 36 | GPIO16
GPIO26 | 37 | 38 | GPIO20
IGNDY| 30 | 40 | GPio21

24

How you enable GPIO on STM32L

A lot of read/modify/write instructions to read current

register values and then to shift/mask to write out updated
bitfields.

e Enable GPIO Clock

e Set output mode for GPIO.
e Set GPIO type.

e Set pin clock speed.

e Set pin pull-up/pull-down
e Set or clear GPIO pin.

-y 25

How you enable on BCM2835 (Rasp-pi)

e Documented in BCM2835 ARM Peripherals Manual
e 53 GPIOs (not all available on board)

e Similar to how done on STM32L... but we have an
operating system

-y 26

Letting the OS handle it for you

27

Linux GPIO interface

e Documentation/gpio/sysfs.txt

e sysfs and string based

28

A few low-level Linux Coding Instructions

-y 29

Enable a GPIO for use

To enable GPIO 17:

write “17" to /sys/class/gpio/export
To disable GPIO 17:

write “17" to /sys/class/gpio/unexport

char buffer [10];
fd=open("/sys/class/gpio/export",0_WRONLY) ;

if (£d<0) fprintf (stderr,"\tError enabling\n");
strcpy (buffer,"17");

write (fd,buffer,2);

close(fd);

30

Set GPIO Direction

To make GPIO 17 an input:

write “Iin” to /sys/class/gpio/gpiol7/direction
To make GPIO 17 an output:

write “out” to /sys/class/gpio/gpiol7/direction

fd=open("/sys/class/gpio/gpiol7/direction",0_WRONLY);
if (£d<0) fprintf (stderr,"Error!\n");
write(fd,"in" ,2);

close(fd);

31

Read /Write GPIO Value

To read value of GPIO 17:

read /sys/class/gpio/gpiol7/value
o write value of GPIO 17:

write /sys/class/gpio/gpiol7/value

fd=open("/sys/class/gpio/gpiol7/value" ,0_WRONLY) ;
if (£d<0) fprintf(stderr,"Error writing!\n");
write(£fd,"1",1);

close (fd);

Note, if reading and you do not close after read you will
have to rewind using 1seek(fd,0,SEEK_SET) ; after your

-y 32

read.

Delay

e Busy delay (like in 271).
for(i=0;i<1000000;i++);
Harder to do in C. Why?
Compiler optimizes away.

e usleep() puts process to sleep for a number of
microseconds. But can have issues if want exact delay.
Why? OS potentially context switches every 100m:s.

e Other ways to implement: Set up PWM? Timers?

-y 34

Implementations

e Busy loop. Bad, burns CPU / power
e usleep(). But can take a while to respond.

e Interrupt when ready! poll()

35

GPIO Interrupts on Linux

May need a recent version of Raspbian.

First write “rising”, Tfalling”, or "both” to
/sys/class/gpio/gpiol7/edge.

Then open and poll /sys/class/gpio/gpiol7/value.

struct pollfd fds;
int result;

fd=open("/sys/class/gpio/gpiol8/value",0_RDONLY);
fds.fd=1fd;
fds.events=POLLPRI|POLLERR;
while (1) {
result=poll (&fds,1, -1);
if (result<0) printf("Error!\n");
lseek (fd,0,SEEK_SET) ;
read (fd,buffer,1); 3}

/Y 36

Debouncing!

e Pull-up / Pull-down resistor. Why?
e Noisy switches, have to debounce

e Manual, no built-in debounce like on STM32L

37

Why Use an Operating System?

e Provides Layers of Abstraction

— Abstract hardware: hide hardware differences. same
hardware interface for classes of hardware (things like
video cameras, disks, keyboards, etc) despite differing
Implementation details

— Abstract software: with VM get linear address space,
same system calls on all systems

— Abstraction comes at a cost. Higher overhead,
unknown timing

-y 38

e Multi-tasking / Multi-user
e Security, permissions (Linus dial out onto /dev/hda)

e Common code in kernel and libraries, no need to re-
Invent

/Y 39

What'’s included with an OS

e kernel / drivers — Linux definition
e also system libraries — Solaris definition

e low-level utils / software / GUI — Windows definition
Web Browser included?

e Linux usually makes distinction between the OS Kernel
and distribution. OSX/Windows usually doesn't.

-y 40

