ECE 471 — Embedded Systems
Lecture 12

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

8 October 2015

Announcements

e Homework grades have been sent out, let me know if
you did not receive them.

e Homework #5 was due
e Homework #6 will be posted today

e A midterm exam is coming up on the 22nd.

Homework 6 notes

e Handout should cover most of it

e bit-banging 12c

e Use the sysfs gpio interface and driving the SDA and
SCL lines manually to talk to the 4x7 LED display

e A lot of the code is provided for you, follow the directions

e How do you set SDA low? How do you set SDA high?

Device Detection

e x80, well-known standardized platform. What windows
needs to boot. Can auto-discover things like PCI bus,
USB. Linux kernel on x86 can boot on most.

e Old ARM, hard-coded. So a rasp-pi kernel only could
boot on Rasp-pi. Lots of pound-defined and hard-coded
hw info.

e New way, device tree. A blob that describes the
hardware. Pass it in with boot loader, and kernel can use

-y 3

it to determine what hardware is available. So instead
of Debian needing to provide 100 kernels, instead just
1 kernel and 100 device tree files that one is chosen at
install time.

e Does mean that updating to a new kernel can be a pain.

Detecting Devices

There are many ways to detect devices

e Guessing/Probing — can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data
sent to It

e Standards — always knowing that, say, VGA is at address
0xa0000. PCs get by with defacto standards

e Enumerable hardware — busses like USB and PCI allow
you to query hardware to find out what it is and where

5

It 1s located

e Hard-coding — have a separate kernel for each possible
board, with the locations of devices hard-coded in. Not
very maintainable in the long run.

e Device Trees — see next slide

Devicetree

e Traditional Linux ARM support a bit of a copy-paste and
+#ifdef mess

e Each new platform was a compile option. No common
code; kernel for pandaboard not run on beagleboard not
run on gumstix, etc.

e Work underway to be more like x86 (where until recently
due to PC standards a kernel would boot on any x86)

e A “devicetree” passes in enough config info to the kernel

Z

to describe all the hardware available. Thus kernel much
more generic

e Still working on issues with this.

Device Firmware

e Devices are their own embedded systems these days.
May even have full CPUs, etc.

e Need to run code. Firmware.

e In ROM? Or upgradable? Why might you want to
upgrade? (bug fixes, economy, etc.)

e lalk about recent USB firmware malware

Firmware

Provides booting, configuration/setup, sometimes provides
rudimentary hardware access routines.

Kernel developers like to complain about firmware authors.
Often mysterious bugs, only tested under Windows, etc.

e BIOS — legacy 16-bit interface on x86 machines

e UEFI — Unified Extensible Firmware Interface
1a64, x86, ARM. From Intel. Replaces BIOS

e OpenFirmware — old macs, SPARC

o LinuxBIOS

/Y 10

Boot Methods

Firmware can be quite complex.

e Floppy
e Hard-drive (PATA/SATA/SCSI/RAID)

e CD/DVD
e USB

e Network (PXE/tftp)

11

e Flash, SD card
e [ape
e Networked tape

e Paper tape? Front-panel switches?

12

Disk Partitions

e Way to virtually split up disk.

e DOS GPT - old partition type, in MBR. Start/stop
sectors, type

e Types: Linux, swap, DOS, etc

e GPT had 4 primary and then more secondary

e Lots of different schemes (each OS has own, Linux
supports many). UEFI more flexible, greater than 2TB

/Y 13

Bootloaders on ARM

e uBoot — Universal Bootloader, for ARM and under
embedded systems

e So both BIOS and bootloader like minimal OSes

-y 14

Raspberry Pi Booting

e Unusual

e Small amount of firmware on SoC

e ARM 1176 brought up inactive (in reset)
e Videocore loads first stage from ROM

e This reads bootcode.bin from fat partition on SD card
into L2 cache. It's actually a RTOS (real time OS in
own right “ThreadX")

-y 15

e This runs on videocard, enables SDRAM, then loads
start.elf

e This Initializes things, the loads and boots Linux
kernel.img. (also reads some config files there first)

-y 16

More booting

e Most other ARM devices, ARM chip runs first-stage
boot loader (often MLO) and second-stage (uboot)

e FAT partition
Why FAT? (Simple, Low-memory, Works on most
machines, In theory no patents despite MS's best
attempts (see exfat))
The boot firmware (burned into the CPU) is smart
enough to mount a FAT partition

-y 17

Booting Linux

e Bootloader jumps into OS entry point

e Set Up Virtual Memory

e Setup Interrupts

e Detect Hardware / Install Device Drivers
e Mount filesystems

e Pass control to userspace / call init

18

e Run init scripts

e rc boot scripts, /etc/rc.local
Start servers, or “daemons” as they're called under
Linux.

e fork()/exec(), run login, run shell

-y 19

How a Program is Loaded on Linux

e Kernel Boots

e init started

e init calls fork()

e child calls exec ()

e Kernel checks if valid ELF. Passes to loader

e Loader loads it. Clears out BSS. Sets up stack. Jumps

-y 20

to entry address (specified by executable)
e Program runs until complete.

e Parent process returned to if waiting. Otherwise, init.

21

Viewing Processes

e You can use top to see what processes are currently
running

e Also ps but that's a bit harder to use.

/Y 22

Context Switching

e OS provides the illusion of single-user system despite
many processes running, by switching between them
quickly.

e Switch rate in general 100Hz to 1000Hz, but can vary
(and is configurable under Linux). Faster has high
overhead but better responsiveness (guis, etc). Slower
not good for interactive workloads but better for long-
running batch jobs.

-y 23

e You need to save register state. Can be slow, especially
with lots of registers.

e When does context switch happen? Periodic timer
interrupt. Certain syscalls (yield, sleep) when a process
gives up its timeslice. When waiting on /O

e \Who decided who gets to run next? The scheduler.
e [he scheduler is complex.

e Fair scheduling? If two users each have a process, who
runs when? |If one has 99 and one has 1, which runs

-y 24

next?

e Various O() ratios for the schedulers

25

