
ECE 471 – Embedded Systems
Lecture 13

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 October 2015

http://www.eece.maine.edu/~vweaver


Announcements

• How is HW#6 going?

• Midterm will be Thursday 22 October

Will cover everything up until the end of today’s lecture.

Will have some review for it on Tuesday.

1



Homework 5 Review

• C Coding Hints:

Use the pre-processor (Pound defines) when odd

constants are involved. Code is much easier if you

have something like HT16K33 REGISTER DIMMING than

0xE0.

• Error checking redux.

If can’t handle an error, exit, don’t just print a message

and charge through.

I only expect reasonable error checking. In theory every

2



printf can fail, but people don’t check for error on every

call. Important things like file opening and memory

allocations you must check and do something.

• 7a. GPU is used on boot on Pi. This is unusual, for

the GPU to handle the booting. It’s *not* unusual for

an embedded board to have a GPU. It’s not necessarily

unusual to have off-chip SD-card storage.

• 7b. What I was looking for was the bootloader, which is

the chunk of code responsible for loading the kernel into

memory. Some people gave the actual name of the Pi

3



boot loader on disk, which I did accept.

• 7c. fat32 is used primarily because it is simple and widely

used, as well as mostly patent free. Simple enough for

firmware/bootloader to read (CPU itself cannot do it

in hardware, there is some software involved). You

could use implement it yourself in a HW assignment

(well, enough to load one file from the root dir). Not

so much NTFS or HFSplus or ext4, let alone btrfs.

fat/fat12/fat16/vfat/fat32/exfat

”manages space effectively” – no

4



Real Time Constraints

What are real time constraints?

• Time deadlines that hardware needs to respond in.

• Goal not performance, but response time

5



Types of Real Time Constraints

• Hard – miss deadline, total failure (people die?)

Antilock brakes?

• Firm – result no longer useful after deadline missed

lost frames in video, missed frames in video game

• Soft – results gradually less useful as deadline passes.

Caps lock LED coming on?

6



Constraints depend on the Application

Can almost always come up with a scenario where a soft

constraint could become hard.

For example: Unlocking a car door taking an extra

second? Not hard real-time, except maybe if your car is

about to crash and you need to escape quickly.

7



What can cause problems with real-time?

Sources of “Jitter”

• Interrupts. Taking too long to run; being disabled (cli)

• Unpredictable nature of modern CPUs. Caches, branch-

predictors, etc.

• Operating system. Scheduler. Context-switching.

• Dynamic memory allocation, garbage collection.

8



• Slow/unpredictable hardware (hard disks, network

access)

9



Determining worst case behavior.

• Hard on modern processors. Easier on stm32l than on

raspberry pi running Linux

• STM32L is in-order. Program in assembly. Turn

off interrupts. You know exactly when everything is

happening.

• Pi, with OS. Can you disable interrupts?

10



Common OS strategies

• Event driven – have priorities, highest priority pre-empts

lower

• Time sharing – only switch at regular clock time, round-

robin

11



Scheduler example

• Static: Rate Monotonic Scheduling – shortest job goes

first

• Dynamic: Earliest deadline first

• Three tasks come in. a. finish in 10s, 4 long. b. finish

in 3, 2 long, c. finish in 5, 1 long

• In order they arrive, aaaabbccc bad for everyone

• RMS: cbbbaaaa works

12



• EDF: bbbcaaaa also works.

• Lots of information on various scheduling algorithms

13



Priority Inversion Example

• Task priority 3 takes lock on some piece of hardware

• Task 2 fires up and pre-empts task 3

• Task 1 fires up and pre-empts task 1, but it needs same

HW as task 3. Waits for it. It will never get free.

• Space probes have had issues due to this.

14



Real Time OS

Who uses realitime?

• Timing critical situations. Cars, medical equipment,

space probes, etc.

• Industrial automation. SCADA. Stuxnet.

• Musicians, important to have low-latency when recording

• High-speed trading

15



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

16



Linux PREEMPT Kernel

• What latencies can you get? 10-30us on some x86

machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB and like)’ Slow

hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

• mlockall() memory in, start threads and touch at

beginning, avoid all causes of pagefaults.

17



Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

18



Other RTOSes

• Vxworks

• Neutrino

• Free RTOS

• Windows CE

19


