ECE 471 — Embedded Systems
Lecture 15

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

27 October 2015


http://www.eece.maine.edu/~vweaver

Announcements

e HWY7 will be posted today

e Hand out SPI hardware



HWO0 Results

e Many people did not submit! Please try to even if you
don't finish.

e Make sure you write ASCIl "0’ to GPIO to pull it low,

not O

Also you need to point the write to something pointing
to '0’. Can't just have write(fd,0,1);

| was confused how the code worked despite never pulling
SDA low, until | realized the sample code was printing

all 1s to display.

-y )



If you were checking errors, it would have reported
EINVAL if you wrote non-ASCII 0 to the GPIO value.

e Why is it slow? What's the minimum time you can delay
when using usleep()? Bitbanging in general?

e static in front of a function or global var means it only
is called in this .c file.

This is slightly different than the meaning of using static
in front of a local variable (inside of a function).

e What's missing vs full protocol?
Fidn't implement clock stretching: When stop bit, when

3



releasing SCL to go high, if it stays low the slave isn't
ready to move on, should wait until it goes high.
Arbitration

Read byte

Paramaterized address

e Error checking. Be aware of errors.

e Interrupt sources
doorbell? more complex on pi2

® yes
for answers a large list of questions in the affirmative?

-y 4



stress test? maybe




Midterm Results

e Not finished grading yet, hopefully by Thursday.



Project Preview

e Can work in groups
e Embedded system (any type, not just Pi)

e Written in any language (asm, C, python, C++, Java,
etc.)

e Do some manner of input and some manner of output
using the various capabilities we discussed

e | have a large amount of i2c, spi, and other devices that

-y ;



you can borrow if you want to try anything interesting.

e Past projects: games, robots, weather stations, motor
controllers, music visualization, etc.

e Will be a final writeup, and then a 10 minute presentation
and demo in front of the class during last week of classes.



SPI review




Errors

e No way to indicate errors

e Some chips will ignore if invalid data sent (wrong number
of bits) some not

-y 10



SPI| advantages

e Full-duplex

e Fast (no set speed limit)

e Arbitrary message size in bits

e Low power (no pullup resistors)

e Can be implemented with minimal hardware (just a
74HCA495 shift register)

-y 1



e No arbitration
e No unique ids
e Unidirectional signals

e Clock provided by master (no oscillator needed in slaves)

-y 12



SPI disadvantages

e More pins (4 plus ground plus power plus one more each
slave)

e Short distances
e No flow control
e No error reporting

e No standard

-y 13



SPI vs i2c

e i2c benefits:

— requires fewer wires

— shared bus (no need for lots of chip select)
— nack when data received

— can have multiple masters

— less susceptible to noise

— can transmit longer distances

— has a formal standard

14



e spi benefits:

— lower power
— potentially faster, full-duplex
— 12c can be brought down by one bad device

15



SPI bus on Raspberry Pi

e SPI1 is on the header

Pin 23 — SCLK

Pin 19 — MOSI

Pin 21 — MISO

Pin 24 — CEO

Pin 26 — CE1

Unlike some boards, no nIRQ (SPI interrupt) pin

16



SPI bus on Linux

e modprobe spidev

e modprobe spi-bcm2835
on older kernels, modprobe spi-bcm2708

e dmesg | grep spi

17



SPI dev interface

® https://www.kernel.org/doc/Documentation/spi/spidev

e /dev/spidevB.C (B=bus, C=slave number).
On pi it is /dev/spidev0.0

e Other wuseful info Iin /sys/devices/.../spiB.C,
/sys/class/spidev/spidevB.C

e To open the device, do something like the following
spi_fd=open("/dev/spidev0.0" ,0_RDWR) ;

-y 18


https://www.kernel.org/doc/Documentation/spi/spidev

e o set the write mode, use ioctl:

int mode=SPI_MODE_O;
result = ioctl(spi_fd, SPI_IOC_WR_MODE, &mode);

Modes can be SPI_MODE_O through 3, or else you can
build them out of SPI_CPOL and SPI_CPHA values.
Current mode can be read back with SPI_I0C_RD_MODE

e [o set the bit order, use ioctl:

int lsb_mode=0;
result = ioctl(spi_fd, SPI_IOC_WR_LSB_FIRST, &lsb_mode);

Current can be read with SPTI_IOC_RD_LSB_FIRST

Get/Set if MSB s first (common) or LSB s first.
Empty bits padded to left with zeros no matter what the

-y 19



setting.

e SPI_T(OC_RD_BITS_PER_WORD, SPI_I0OC_WR_BITS_PER_WOE
Number of bits in each transfer word. Default (0) is 8
bits.

e SPI_TOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ
Set the maximum clock speed.

e By default using read() or write () on the device node
will only do half-duplex.

e For full duplex support you need something like the

-y 20



following:

#define LENGTH 3

int result;

struct spi_ioc_transfer spi;

unsigned char data_out [LENGTH]={0x1,0x2,0x3};
unsigned char data_in [LENGTH];

/* kernel doesn’t like it if stray values, even in padding */
memset (&spi,0,sizeof (struct spi_ioc_transfer));

/* Setup full-duplex transfer of 3 bytes */
spi.tx_buf (unsigned long)&data_out;
spi.rx_buf (unsigned long)&data_in;

spi.len = LENGTH;
spi.delay_usecs = 0 ;
spi.speed_hz = 100000 ;
spi.bits_per_word = 8 ;
spi.cs_change = 0 ;

/* Run one full-duplex transaction */
result = ioctl(spi_fd, SPI_IOC_MESSAGE(1), &spi) ;

21



Analog Digital Converters on Raspberry Pl

e Unlike many other embedded boards, the Pi has no A/D
converters built in.

e You're stuck using SPI or i2c devices

/Y 22



MCP3008

o For HW#7 we'll use the MCP3008 8-port 12-bit SPI
A/D converter

e up to 100ksp (samples per second)
e Returns 10-bits of accuracy

e 8 single-ended inputs (vs ground) or 4 “pseudo-
differential” inputs (vs each other)

e Config sent in each request packet

-y 23



e Clock frequency must be long enough that the A/D has
time to convert

valuex VR
1024

o 1y =

-y 24



MCP3008 ;.controller mode

e Datasheet describes way to easily use from a device

e Send 3 bytes. First has value ‘1" (the start bit). The
second has the top 4 bits being single/diff followed by
3 bits of which channel you want. The rest is all Os for
padding.

e You read back 3 bytes. First 13 bits are don't care
(ignore) followed by 0 then the 10 bits of sample.

& XXXXXXXX XXXXX098 76543210

-y 25



TMP36

e Linear temperature sensor

e [he temperature can be determined with the following
equation:
deg_C' = (100 x wvoltage) — 50

e Also the following might be useful:
deg_F = (deg_C x 2) + 32

e Be careful hooking up! If vdd/gnd switched it heats up
to scalding temperatures (the datasheet lists the pinout

-y 26



from the bottom). If you catch it in time doesn’'t seem
to be permanently damaged.

-y 21



Floating Point in C

e Converting int to floating point:

int value=45;
double temp;

temp=value; // works
temp=(float)value; // casts make the conversion explicit

// but can potentially hide bugs

e float vs double
float is 32-bit, double 64-bit

e Constants 9/5 vs 9.0/5.0

28



The first is an integer so just “1". Second is expected
1.8.

e Printing. First prints a double. Second prints a double
with only 2 digits after decimal.

printf ("/%1f\n",temp);
printf ("% .21f\n",temp) ;

-y 29



