
ECE 471 – Embedded Systems
Lecture 22

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 November 2015

http://www.eece.maine.edu/~vweaver

Announcements

• Project groups status report due:

1. One-sentence summary of project

2. What hardware you plan to use for input/output and

board?

3. Have you acquired/tested the hardware? Does it work?

4. Are you willing to present on Tuesday rather than

Thursday?

1

Homework 8 Review

• Some C coding mistakes

• Why need Vdd? To provide enough current for this

particular chip needs extra transistor if you want parasite

mode.

You can try without Vdd but you will always read out

85C.

• Because of distance, 1-wire

• shell script

2

Homework 9 Review

• List an *example* of poorly written embedded code.

• Why write good code?

Cut-and-pasting, good practice, among other reasons.

• Why is touch useful? force make to rebuild

• 2038 problem

Time in Linux is seconds since 1-1-1970. Not a problem

64-bit machines, but overflows in 2038 for 32-bit. Can

3

avoid with a 64-bit system or else a specially patched

Linux system

discuss y2k problem

• ctime – last status (metadata) change (originally create

time) things like permissions change, ownership change,

rename

mtime – last modified

atime – last access

• In stat syscall. stat command. Why atime bad?

4

noatime, relatime

• utime() used by touch. Cannot change ctime, set to

current time

• why not believe timestamp? maybe could look at ctime.

also set clock back if own machine.

HW assignment at Cornell

5

Low-Level Linux/Project digressions

6

Linux and Keyboard

• Old ps/2 keyboard just a matrix of keys, controlled by a

small embedded processor.

Communication via a serial bus. Returns “keycodes”

when keypress and release and a few others.

• Many modern keyboards are USB, which requires full

USB stack. To get around needing this overhead (for

BIOS etc) support bit-bang mode. OS usually has

abstraction layer that supports USB keyboards same as

old-style

7

• Linux assumes “CANONICAL” input mode, i.e. like a

teletype. One line at a time, blocking input, wait until

enter pressed.

• You can set non-CANONICAL mode, async input, and

VMIN of 1 to get reasonable input for a game. Arrow

keys are reported as escape sequences (ESCAPE-[-A for

up, for example).

• Even lower-level you can access “RAW” mode which

gives raw keycode events, etc.

• There are libraries like ncurses that abstract this a bit.

Also GUI and game libraries (SDL).

8

Power and Energy Concerns

Table 1: ATLAS 300x300 DGEMM (Matrix Multiply)
Machine Processor Cores Frequency Idle Load Time Total Energy

Raspberry Pi ARM 1176 1 700MHz 3.0W 3.3W 23.5s 77.6J

Gumstix Overo Cortex-A8 1 600Mhz 2.6W 2.9W 27.0s 78.3J

Beagleboard Cortex-A8 1 800MHz 3.6W 4.5W 19.9s 89.5J

Pandaboard Cortex-A9 2 900MHz 3.2W 4.2W 1.52s 6.38J

Chromebook Cortex-A15 2 1.7GHz 5.4W 8.1W 1.39s 11.3J

9

Questions

• Which machine consumes the least amount of energy?

(Pandaboard)

• Which machine computes the result fastest?

(Chromebook)

• Chromebook is a laptop so also includes display and wi-fi

• Consider a use case with an embedded board taking a

picture once every 20 seconds and then performing a

10

300x300 matrix multiply transform on it. Could all of

the boards listed meet this deadline?

No, the Raspberry Pi and Gumstix Overo both take

longer than 20s and the Beagleboard is dangerously

close.

• Assume a workload where a device takes a picture once

a minute then does a 300x300 matrix multiply (as seen

in Table 1). The device is idle when not multiplying,

but under full load when it is. Over an hour, what is the

energy usage of the Chromebook? What is the energy

usage of the Gumstix?

11

Chromebook per minute: (1.39s × 8.1W) + (58.61s ×
5.4W) = 327.75J

Chromebook per hour: 327.75J * 60 = 19.7kJ

Gumstix per minute: (27s × 2.9W) + (33s × 2.6W) =

164.1J

Gumstix per hour: 164.1J * 60 = 9.8kJ

12

Pandaboard Power Stats

• Wattsuppro: 2.7W idle, seen up to 5W when busy

• http://ssvb.github.com/2012/04/10/cpuburn-arm-cortex-a9.

html

• With Neon and CPU burn:
Idle system 550 mA 2.75W

cpuburn-neon 1130 mA 5.65W

cpuburn-1.4a (burnCortexA9.s) 1180 mA 5.90W

ssvb-cpuburn-a9.S 1640 mA 8.2W

13

http://ssvb.github.com/2012/04/10/cpuburn-arm-cortex-a9.html
http://ssvb.github.com/2012/04/10/cpuburn-arm-cortex-a9.html

Easy ways to reduce Power Usage

14

DVFS

• Voltage planes – on CMP might share voltage planes so

have to scale multiple processors at a time

• DC to DC converter, programmable.

• Phase-Locked Loops. Orders of ms to change. Multiplier

of some crystal frequency.

• Senger et al ISCAS 2006 lists some alternatives. Two

phase locked loops? High frequency loop and have

programmable divider?

15

• Often takes time, on order of milliseconds, to switch

frequency. Switching voltage can be done with less

hassle.

16

When can we scale CPU down?

• System idle

• System memory or I/O bound

• Poor multi-threaded code (spinning in spin locks)

• Thermal emergency

• User preference (want fans to run less)

17

