ECE471: Embedded Systems – Homework 11 Power/Performance

Due: Thursday, 8 December 2016, 9:30am EST

Power and Energy

Machine	Processor	Cores	Frequency	Idle Power	Load Power	Time	Total Energy
Raspberry Pi 2	Cortex-A7	4	900MHz	1.8W	3.4W	454s	1543J
Dragonboard	Cortex-A53	4	1.2GHz	2.4W	4.7W	241s	1133J
Raspberry Pi 3	Cortex-A53	4	1.2GHz	1.8W	4.3W	178s	765J
Jetson-TX1	Cortex-A57	4	1.9GHz	2.1W	13.4W	47s	629J
Macbook Air	Broadwell	2	1.6GHz	10.0W	29.1W	14s	407J

Table 1: OpenBLAS HPL N=10000 (Matrix Multiply)

- 1. Table 1 shows the energy use of various machines when doing a large Matrix-Matrix multiply.
 - (a) Which machine has the lowest under-load power draw?
 - (b) Which machine consumes the least amount of energy?
 - (c) Which machine computes the result fastest?
- 2. Consider a use case with an embedded board taking a picture once every 60 seconds and then performing a matrix-multiply similar to the one in the benchmark (perhaps for image-recognition purposes). Could all of the boards listed meet this deadline?
- 3. Assume a workload where a device takes a picture once a minute then does a large matrix multiply (as seen in Table 1). The device is idle when not multiplying, but under full load when it is.
 - (a) Over an hour, what is the total energy usage of the Jetson TX-1?
 - (b) Over an hour, what is the total energy usage of the Macbook Air?
- 4. Given your answer in the previous question, which device would you choose if you were running this project off of a battery?

Performance

Raspberry Pi Model 2 results, no Optimization

```
$ perf stat -e instructions,cycles,L1-dcache-load-misses,branch-misses \
./dgemm_naive 250
Will need 2000000 bytes of memory, Iterating 10 times
Performance counter stats for './dgemm_naive 250':
5,042,022,526 instructions  # 0.48 insns per cycle
10,414,207,828 cycles
38,943,964 L1-dcache-load-misses
1,234,120 branch-misses
11.639344013 seconds time elapsed
```

Raspberry Pi Model 2 results, -O2 Optimization

5. Performance questions

You are running a matrix-multiply benchmark on pi2 with no optimizations and you obtain the perf results at the top. Your friend recommends compiling with the -02 compiler flag and you obtain the results on the bottom.

- (a) Which is faster, none or O2 optimization?
- (b) How many instructions were executed in none vs O2?
- (c) Some metrics, such as IPC and cache misses, are actually worse in the optimized code. How can these be worse yet the program still runs faster?

Submitting the Assignment

Please put your answers to questions 1 - 5 in some sort of document (text, pdf, doc) and ***e-mail*** it to me by the deadline.