
ECE 471 – Embedded Systems
Lecture 14

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

20 October 2016

http://www.eece.maine.edu/~vweaver


Announcements

• HW7 will be posted today

• Hand out SPI hardware

• Hand out extra wires

• Hold on to your LED displays (and temperature

measuring probes) until after Homework #9

1



Project Preview

• Can work in groups

• Embedded system (any type, not just Pi)

• Written in any language (asm, C, python, C++, Java,

etc.)

• Do some manner of input and some manner of output

using the various capabilities we discussed

• I have a large amount of i2c, spi, and other devices that

2



you can borrow if you want to try anything interesting.

• Past projects: games, robots, weather stations, motor

controllers, music visualization, etc.

• Will be a final writeup, and then a 10 minute presentation

and demo in front of the class during last week of classes.

3



System Busses

• Older busses often exposed CPU pins directly to

connector: Apple II, S-100, ISA

• This was not sustainable, if only because number of CPU

pins grew rapidly. Also speed issues.

4



Parallel vs Serial Busses

• Originally most busses were Parallel. More bits at a time

means higher bandwidth. IDE, Parallel Port, 32-bit PCI,

64-bit PCI

• Problems with parallel: keeping signals in sync. As

busses go faster, skew comes into things. Wire length

matters. Power issues with driving wide busses.

• Newer busses are serial: SATA, PCIe, USB, Firewire,

etc. Also advantage of having fewer wires to route.

• HPC users grumble about speed of PCIe

5



SPI bus

• Serial Peripheral Interface Bus

• Synchronous full-duplex serial bus named/formalized by

Motorola. No real standard.

• What does synchronous mean? (Separate clock line)

• What does full-duplex mean? (Transmit and receive at

same time)

6



What used for?

• LCD displays

• Optional interface to SD cards

• LED strips

• JTAG

7



Hardware Setup

• Master/slave with multiple slave select lines

• 4-wire bus

• SCLK – serial clock (output from master)

• MOSI – master out, slave in

• MISO – master in, slave out

Must be high impedance if more than one slave

8



• CS0, CS1, etc – slave chip selects

Master

CLCK

MISO

MOSI

CS

CLCK

MISO

MOSI

CS

___

___

CLCK

MOSI

MISO
CS0

CS1

CSN

... Slave 1

Slave 0

Slave N
...

9



SPI protocol

• Pulls chip-select of desired slave low

• Master starts clock

No set speed, just what the slave can handle.

Up to a few MHz

• Must both Send *and* receive (at same time over

MISO/MOSI wires)

Doesn’t have to be useful data, but must be done both

ways

10



• Master transmits data bits as long as it has it. When

done turns off clock and maybe deselects slave.

• It’s basically just a shift register in the master and slave,

and you rotate through enough bits to swap the values

in each, then both sides can read out the transfer.

MOSI

MISO

Master Slave

11



Clock Polarity/Phase

• Many have adopted Freescale’s terminology

• CPOL=0 – base clock is zero

– CPHA=0 – data captured on rising edge

– CPHA=1 – data captured on falling edge

• CPOL=1 – base clock is one

– CPHA=0 – data captured on falling edge

– CPHA=1 – data captured on rising edge

12



• Also given as “mode” numbers, 0 - 3. CPOL/CPHA.

This can vary by manufacturer. Check your data sheet!

• Timing diagram from Wikipedia (CC BY-SA 3.0)

SCK
CPOL=0
CPOL=1

SS

Cycle # 1 2 3 4 5 6 7 8

MISO 1 2 3 4 5 6 7 8 zz

1 2 3 4 5 6 7 8 zzMOSI
CPHA=0

Cycle # 2 3 4 5 6 7 81

MISO 2 3 4 5 6 7 8 zz 1

MOSI 2 3 4 5 6 7 8 zz 1

CPHA=1

13



Connection

• “independent” – One slave per select line

• “daisy-chain” – MISO to MOSI, like long chain of shift

registers, only need one SS line.

14



Interrupts

• Possible... think touch screens and such. Not officially

specified

15



Errors

• No way to indicate errors

• Some chips will ignore if invalid data sent (wrong number

of bits) some not

16



SPI advantages

• Full-duplex

• fast (no set speed limit)

• arbitrary message size in bits

• low power (no pullup resistors)

• Can be implemented with minimal hardware (just a

74HC495 shift register)

17



• no arbitration

• no unique ids

• unidirectional signals

• clock provided by master (no oscillator needed in slaves)

18



SPI disadvantages

• more pins (4 plus ground plus power plus one more each

slave)

• short distances

• no flow control

• no error reporting

• no standard

19



SPI vs i2c

• i2c benefits:

– requires fewer wires

– shared bus (no need for lots of chip select)

– nack when data received

– can have multiple masters

– less susceptible to noise

– can transmit longer distances

– has a formal standard

20



• spi benefits:

– lower power

– potentially faster, full-duplex

– i2c can be brought down by one bad device

21



SPI bus on Raspberry Pi

• SPI1 is on the header

• Pin 23 – SCLK

• Pin 19 – MOSI

• Pin 21 – MISO

• Pin 24 – CE0

• Pin 26 – CE1

• Unlike some boards, no nIRQ (SPI interrupt) pin

22



SPI bus on Linux

• On recent Pis, SPI is enabled through devicetree. You

can run sudo raspi-config, select advanced, then

SPI, then say yes to enable and at boot.

• On older systems you might have to do this manually

by modprobe spi-bcm2835; even older kernels it has a

different name: modprobe spi-bcm2708

• dmesg | grep spi will show useful debug

• To get the user interface modprobe spidev

23



SPI dev interface

• https://www.kernel.org/doc/Documentation/spi/spidev

• /dev/spidevB.C (B=bus, C=slave number).

On pi it is /dev/spidev0.0

• Other useful info in /sys/devices/.../spiB.C,

/sys/class/spidev/spidevB.C

• To open the device, do something like the following

spi fd=open("/dev/spidev0.0",O RDWR);

24

https://www.kernel.org/doc/Documentation/spi/spidev


• To set the write mode, use ioctl:
int mode=SPI_MODE_0;

result = ioctl(spi_fd , SPI_IOC_WR_MODE , &mode);

Modes can be SPI MODE 0 through 3, or else you can

build them out of SPI CPOL and SPI CPHA values.

Current mode can be read back with SPI IOC RD MODE

• To set the bit order, use ioctl:
int lsb_mode =0;

result = ioctl(spi_fd , SPI_IOC_WR_LSB_FIRST , &lsb_mode );

Current can be read with SPI IOC RD LSB FIRST

Get/Set if MSB is first (common) or LSB is first.

Empty bits padded to left with zeros no matter what the

25



setting.

• SPI IOC RD BITS PER WORD, SPI IOC WR BITS PER WORD

Number of bits in each transfer word. Default (0) is 8

bits.

• SPI IOC RD MAX SPEED HZ, SPI IOC WR MAX SPEED HZ

Set the maximum clock speed.

• By default using read() or write() on the device node

will only do half-duplex.

• For full duplex support you need something like the

26



following:
#define LENGTH 3

int result;

struct spi_ioc_transfer spi;

unsigned char data_out[LENGTH ]={0x1 ,0x2 ,0x3};

unsigned char data_in[LENGTH ];

/* kernel doesn’t like it if stray values , even in padding */

memset (&spi ,0,sizeof(struct spi_ioc_transfer ));

/* Setup full -duplex transfer of 3 bytes */

spi.tx_buf = (unsigned long)& data_out;

spi.rx_buf = (unsigned long)& data_in;

spi.len = LENGTH;

spi.delay_usecs = 0 ;

spi.speed_hz = 100000 ;

spi.bits_per_word = 8 ;

spi.cs_change = 0 ;

/* Run one full -duplex transaction */

result = ioctl(spi_fd , SPI_IOC_MESSAGE (1), &spi) ;

27



Analog Digital Converters on Raspberry PI

• Unlike many other embedded boards, the Pi has no A/D

converters built in.

• You’re stuck using SPI or i2c devices

28



MCP3008

• For HW#7 we’ll use the MCP3008 8-port 10-bit SPI

A/D converter

• up to 100ksp (samples per second)

• 2.7 to 5.5V

• 10-bits of accuracy

• 8 single-ended inputs (vs ground) or 4 “pseudo-

differential” inputs (vs each other)

29



• Config sent in each request packet

• Clock frequency must be long enough that the A/D has

time to convert

• VIN = value×VREF
1024

Yes, this seems wrong (can never have full VREF output)

but this is what the data sheet says to use

30



MCP3008 µcontroller mode

• Datasheet describes way to easily use from a device

• Send 3 bytes. First has value ‘1’ (start bit). The second

has the top 4 bits being single/diff followed by 3 bits of

channel you want. The rest is all 0s for padding.

• 00000001 SCCC0000 00000000

• You read back 3 bytes. First 13 bits are don’t care

(ignore) followed by 0 then the 10 bits of sample.

• XXXXXXXX XXXXX098 76543210

31



TMP36

• Linear temperature sensor

• The temperature can be determined with the following

equation:

deg C = (100× voltage)− 50

• Also the following might be useful:

deg F = (deg C × 9
5) + 32

• Be careful hooking up! If vdd/gnd switched it heats up

to scalding temperatures (the datasheet lists the pinout

32



from the bottom). If you catch it in time doesn’t seem

to be permanently damaged.

33



Floating Point in C

• Converting int to floating point:

int value =45;

double temp;

temp=value; // works

temp=( float)value; // casts make the conversion explicit

// but can potentially hide bugs

• float vs double

float is 32-bit, double 64-bit

• Constants 9/5 vs 9.0/5.0

34



The first is an integer so just “1”. Second is expected

1.8.

• Printing. First prints a double. Second prints a double

with only 2 digits after decimal.
printf("%lf\n",temp);

printf("%.2lf\n",temp);

35


