
ECE 471 – Embedded Systems
Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

25 October 2016

http://web.eece.maine.edu/~vweaver

Announcements

• Don’t wait until the last minute for HW#7

1

HW6 Results

• Make sure you write ASCII ’0’ to GPIO to pull it low,

not 0

Also you need to point the write to something pointing

to ’0’. Can’t just have write(fd,0,1);

I was confused how the code worked despite never pulling

SDA low, until I realized the sample code was printing

all 1s to display.

If you were checking errors, it would have reported

EINVAL if you wrote non-ASCII 0 to the GPIO value.

2

• Why is it slow? What’s the minimum time you can delay

when using usleep()? Bitbanging in general?

• static in front of a function or global var means it only

is called in this .c file.

This is slightly different than the meaning of using static

in front of a local variable (inside of a function).

• What’s missing vs full protocol?

Didn’t implement clock stretching: When stop bit, when

releasing SCL to go high, if it stays low the slave isn’t

ready to move on, should wait until it goes high.

3

Arbitration

Read byte

Parameterized address

• Error checking. Be aware of errors.

• interrupt sources

doorbell? more complex on pi2, pi3. IPI is inter-

processor

• yes

for answers a large list of questions in the affirmative?

stress test? maybe

4

hold down your finger forever on fsck. Hope last one

isn’t something like ”erase filesystem”

5

HW7 Notes

• Why is the kernel erroring out if the empty “pad” bit

not zero?

Forward compatibility. You want to make sure that

any empty bits stay that way. If you want to add

new functionality in the future you have to ensure

reserved bits are all zero, otherwise old programs will

do unexpected things (or break) if they had been

accidentally setting those bits.

So why were the pad bits non-zero? Bad luck. Local

6

struct allocated on the stack, so if there were old values

on the stack the pad value could be non-zero.

• ADC max is 1023

7

Project Preview

• Can work in groups

• Embedded system (any type, not just Pi)

• Written in any language (asm, C, python, C++, Java,

etc.)

• Do some manner of input and some manner of output

using the various capabilities we discussed

• I have a large amount of i2c, spi, and other devices that

8

you can borrow if you want to try anything interesting.

• Past projects: games, robots, weather stations, motor

controllers, music visualization, etc.

• Will be a final writeup, and then a 10 minute presentation

and demo in front of the class during last week of classes.

9

Analog Digital Converters

10

Floating Point in C

• Converting int to floating point:

i n t v a l u e =45;

d o u b l e temp ;

temp=v a l u e ; // works

temp=(f l o a t) v a l u e ; // c a s t s make t he c o n v e r s i o n e x p l i c i t

// but can p o t e n t i a l l y h i d e bugs

• float vs double

11

float is 32-bit, double 64-bit

• Constants 9/5 vs 9.0/5.0

The first is an integer so just “1”. Second is expected

1.8.

• Printing. First prints a double. Second prints a double

with only 2 digits after decimal.

p r i n t f (”% l f \n ” , temp) ;

p r i n t f (”%.2 l f \n ” , temp) ;

12

Determining worst case behavior.

• Hard on modern processors. Easier on stm32l than on

raspberry pi running Linux

• STM32L is in-order. Program in assembly. Turn

off interrupts. You know exactly when everything is

happening.

• Pi, with OS. Can you disable interrupts?

• Hybrid? Full OS, but with deterministic processors

tacked on? BBB PRUs

13

Common OS strategies

• Event driven – have priorities, highest priority pre-empts

lower

• Time sharing – only switch at regular clock time, round-

robin

14

Scheduler example

• Static: Rate Monotonic Scheduling – shortest job goes

first

• Dynamic: Earliest deadline first

• Three tasks come in. a. deadline 10s, runs 4s. b.

deadline 3s, runs 2s, c. deadline in 5s, runs 1s

• In order they arrive, aaaabbc bad for everyone

• RMS: cbbbaaaa works

15

• EDF: bbbcaaaa also works.

• Lots of information on various scheduling algorithms

16

Priority Inversion Example

• Task priority 3 takes lock on some piece of hardware

• Task 2 fires up and pre-empts task 3

• Task 1 fires up and pre-empts task 1, but it needs same

HW as task 3. Waits for it. It will never get free.

• Space probes have had issues due to this.

17

Real Time OS

Who uses realtime?

• Timing critical situations. Cars, medical equipment,

space probes, etc.

• Industrial automation. SCADA. Stuxnet.

• Musicians, important to have low-latency when recording

• High-speed trading

18

PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

19

Linux PREEMPT Kernel

• What latencies can you get? 10-30us on some x86

machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB and like)’ Slow

hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

• mlockall() memory in, start threads and touch at

beginning, avoid all causes of pagefaults.

20

Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

21

Other RTOSes

• Vxworks

• Neutrino

• Free RTOS

• Windows CE

22

