
ECE 471 – Embedded Systems
Lecture 18

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 November 2016

http://web.eece.maine.edu/~vweaver

Announcements

• Back from Linux Plumbers

• Working on getting homeworks graded

• Don’t forget HW#10, due next Thursday

• Also don’t forget project ideas, I’ll respond

1

Pi Cluster Paper

• Trouble when trying to evaluate a board for use

• Lots of parameters

FLOPS

STREAM

Watts

GFLOPS/W

Integer

• The ones on paper aren’t always best. Recent Orange

2

Pi release.

• Really networking is the holdup.

• Nice to have a system to run tests on that is low power.

That many x86 machines noisy and power-hungry and

hot

• Would probably get a Pi3 if had to do it again

3

Case Studies

4

Social Engineering

5

Worrisome embedded systems

• Backdoors in routers.

• Voting Machines, ATMs

• pacemakers

• Rooting phones

• Rooting video games

• Others?

6

Voting Machines

• Maine has paper ballot — not too bad

• Often are old and not tested well (Windows XP, only

used once a year)

• USB ports and such exposed, private physical access

• Can you trust the software? What if notices it is Election

Day and only then flips 1/10th the vote from Party A to

Party B. Would anyone notice? What if you have source

code?

• What if the OS does it. What if Windows had code that

7

on Election Day looked for a radio button for Party A

and silently changed it to Party B when pressed?

• OK you have and audit the source code. What about

the compiler? (Reflections on Trusting Trust). What

about the compiler that compiled the compiler?

• And of course the hardware, but that’s slightly harder to

implement but a lot harder to audit.

8

Examples – CANbus

• 2010 IEEE Symposium on Security and Privacy.

Experimental Security Analysis of a Modern Automobile

U of Washington and UCSD.

• Fuzzing/ARM/CANbus

• can control brakes (on / off suddenly)

• heating, cooling, lights, instrument panel

• windows/locks Why? fewer wires if on a bus then

9

direct-wired

• electronic stability control, antilock, need info from each

wheel

• roll stability control (affect braking, turning to avoid

rollover)

• cruise control

• pre-crash detection (tighten seatbelts, charge brakes)

• while it might be nice to have separate busses for

10

important and unimportant, in practice they are bridged

• Locks– monitor buttons, also remote keyfob... but also

disengage if airbag deploys

• OnStar – remotely monitor car, even remotely stop it (in

case of theft) over wireless modem

• Access? OBD-II port, also wireless

• 2009 car

• cars after 2008 required to have canbus?

11

• Problems with CAN

– Broadcast... any device can send packets to any other

– Priority.. devices set own priority, can monopolize bus

– No authentication... any device can control any other

– Challenge-response. Cars are supposed to block

attempts to re-flash or enter debug mode without

auth. But, mostly 16-bits, and required to allow a try

every 10s, so can brute force in a week.

– If you can re-flash firmware you can control even w/o

ongoing access

12

• Not supposed to disable CAN or reflash firmware while

car moving, but on the cars tested they could.

• Probing – packet sniffing, fuzzing (easier as packet sizes

small)

• experiments – on jackstands or closed course

• controlled radio – display, sounds, chimes

• Instrument panel – set arbitrary speed, rpm, fuel,

odometer, etc

13

• Body control – could lock/unlock (jam by holding down

lock), pop trunk, blow horn, wipers on, lights off

• Engine... mess with timing. forge ”airbag deployed” to

stop engine

• Brakes.. managed to lock brakes so bad even reboot

and battery removal not fix, had to fuzz to find antidote

• can over-ride started switch. wired-or

• test on airport. cord to yank laptop out of ODB-II

14

• fancy attacks. Have speedometer read too high. Disable

lights. ”self-destruct” w countdown on dash, horn

beeping as got closer, then engine disable.

15

Stuxnet

• SCADA – supervisory control and data acquisition

• industrial control system

• STUXNET.. targets windows machines, but only

activates if Siemens SCADA software installed. four

zero-day vulnerabilities

USB flash drives

signed with stolen certificates

16

• Interesting as this was a professional job. Possibly

by US/Israel targeting very specific range of centrifuges

reportedly used by Iran nuclear program. While reporting

”everything OK” the software then spun fast then slow

enough to ruin equipment.

17

Examples – JTag/hard-disk

• JTAG/Hard-disk takeover

• http://spritesmods.com/?art=hddhack&page=8

• Find JTAG

• 3 cores on hard-disk board, all ARM. One unused.

• Install custom Linux on third core. Then have it do

things like intercept reads and change data that is read.

18

http://spritesmods.com/?art=hddhack&page=8

Places for More Info

• Embedded projects: http://hackaday.com

They had a recent series on CAN-bus

• Computer Risks and Security Issues: The RISKS digest

from comp.risks

http://www.risks.org

19

http://hackaday.com
http://www.risks.org

Software Bugs

• Not all bugs are security issues

• Coding bugs can have disastrous effects

20

Automotive

• Until recently no standard

• Bugs, Toyota firmware

• http://www.edn.com/design/automotive/4423428/

2/Toyota-s-killer-firmware--Bad-design-and-its-consequences

21

http://www.edn.com/design/automotive/4423428/2/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.edn.com/design/automotive/4423428/2/Toyota-s-killer-firmware--Bad-design-and-its-consequences

Airplanes

• DO-178B / DO-178C

• Software Considerations in Airborne Systems and

Equipment Certification

– Catastrophic: fatalities, loss of plane

– Hazardous: negative safety, serious/fatal injuries

– Major: reduce safety, inconvenience or minor injuries

– Minor: slightly reduce safety, mild inconvenience

– No Effect: no safety or workload impact

22

• AA Flight 965. Autopilot to waypoint R. Re-entered

it, two starting with R, so it helpfully picked one with

highest frequency, did a semi-circle turn to east right

into a mountain.

23

Military

• Patriot missile – clock drift slightly, but when on for

hundreds of hours enough to affect missile tracking

• Yorktown smart ship – 1997 – Running Windows NT.

Someone entered 0 in a field, divide by 0 error, crashed

the ship. Database crash, crashed propulsion system.

Rumors that it needed to be towed in, but no, only down

for 2.75 hours.

• F-22s computers crashed when crossing 180 degrees

24

longitude? Lost navigation and communication, had to

follow tankers back to Hawaii.

25

Spacecraft

• Mariner 1 (1962) – rocket off course due to

mis-transcribed specification into FORTRAN, missing

overbar

• Apollo 11 (1969) – landing on moon. Processor normally

loaded with 85% load. DELTAH program run which take

10%. But buggy radar device was stealing 13% even

though in standby mode. Mini real-time OS with priority

killed low-priority tasks so things still worked.

26

• Ariane 5 Flight 501 (1996) – famous. $370 million. Old

code from Ariane 4. Could not trigger on Ariane 4.

Horizontal acceleration crashed primary and secondary

computers, sending debug messages that the autopilot

read as velocity data. Conversion from 64-bit float to

16-bit signed int overflow. Should have had check on

it that vertical acceleration, but did not. Not properly

simulated in advance. Written in ADA

• NASA Mars Polar Lander (1999) – mistook turbulence

vibrations for landing and shut off engine 40m above

surface

27

• NASA Mars Climate Orbiter – ground software using lbf

(pound/foot) units, craft expecting Newtons

• NASA Mars Spirit rover (2004) – temporarily disabled

due to too many files on flash drive. Constantly

rebooting. Radio could understand some commands

directly, could reboot with flash disabled. Fixed when

deleted some unneeded files. Eventually reformat.

• ESA CryoSat-1 (2005) – lost due to missing shutdown

command

28

Medical

• IEC 62304

• Therac-25 radiation treatment machine. 6 accidents,

patients given 100x dose. High power beam activated

w/o spreader too.

Older machines had hardware interlock, this one in

software. Race condition. If 8-bit counter overflow just

as entering manual over-ride, it would happen.

– Software not independently reviewed

29

– Something wrong: Printed “MALFUNCTION” and

error number 1 to 64 which was not documented in

manual. Press P to clear.

– Operators not believe complaints from patients.

– To trigger, had to press X (mistake), up (to correct),

E (to set proper) then ”Enter” all within 8 seconds.

– This missed during testing as it took a while for

operators to get used to using machines enough to

type that fast.

– Used increment rather than move to set flag.

– Written in Assembly Language

30

Financial

• Knight Capital. Upgrade 7 of 8 machines, missed last.

Re-used a flag definition with new software. Caused

massive selloff, $440 million

31

Power

• 2003 Blackout. Race condition, no alarms notify as wires

fail, backup of alarms crash server.

32

Good Design Practices

33

Space Shuttle Design

• HAL/S high-order assembly language (high-level

language similar to PL/I)

• PASS software – runs tasks. Too big to fit in memory

at once

• BFS – backup flight software. Bare minimum to takeoff,

stay in orbit, safely land, fits in memory, monitors pASS

during takeoff/landing Written by completely different

team.

34

• 28 months to develop new version

• IBM

• originally 424k of core each

• Extensive verification. One internal pass, one external

• 4 computers running PASS, one running BFS

• Single failure mission can continue; still land with two

failures

• 4 computers in lock-step, vote, defective one kicked out

35

Code Safety Standards

• Avionics: DO-178C (1992 for B)

• Industrial: IEC 61508 (1998)

• Railway: CENELEC EN 50128 (2001)

• Nuclear: IEC 61513 (2001)

• Medical: IEC 62304 (2006)

• Automotive: ISO 26262 (2011)

36

Writing Good (Embedded) C Code

• Various books. Common one: MISRA: Guidelines for

the Use of the C Language in Critical Systems

• Comment your code!

• Strict, common code formatting (indentation)

• More exact variable types (int32 t not int) Size can vary

on machine, and on operating system

• Subset to avoid undefined behavior

37

• Tool that enforces the coding standards

• Good to write safe code even if it isn’t meant for a safe

application. Why? Good practice. Also who knows who

or when your code might be copied into another project.

38

