
ECE 471 – Embedded Systems
Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 September 2017

http://web.eece.maine.edu/~vweaver

Announcements

• HW#2 was posted, it is due Friday

1

Homework #1 Review

• Characteristics of embedded system

◦ embedded inside, resource constrained, dedicated

purpose, real-time

◦ Toothbrush is actual specs I came across

◦ Real-Time Confusion: we will discuss this more in

future.

Toothbrush: Just turning off the motor, and it takes an

extra 1/2s is not really considered a real time thing. No

one dies, no hardware destroyed, just mild annoyance

2

if noticed at all. Now if somehow it had to keep the

waveform to H-bridge exact within 1ms or the motor

would overheat and catch on fire, that could be a

real-time issue.

Microwave: having a clock doesn’t make it real time.

Hopefully the door control has a physical interlock, but

you never know. Usually when cooking food second

granularity and some jitter not matter much.

◦ Limited Hardware

bitness of processor: while 8 or 16 bit probably

embedded these days, 32 vs 64 bit not necessarily

3

a sure sign.

Cost is an interesting one. Something like a desktop

might be optimized for cost extremely, while a one-

off embedded system might not, and in fact might

be over-engineered (like a spaceprobe) because has to

operate in tough conditions.

◦ Operating system?

Can have an OS and still be considered embedded.

◦ Be strong in your convictions!

• ASIC

4

◦ cost/power. Depends a lot on numbers made, process,

and how well designed it is.

◦ Extra hardware overhead? ASIC mostly just flip flops

and gates. SoC internally a lot more, but these days

not much else is needed.

• ARM1176JZF-S: Java, TrustZone, Vector Floating,

Synthesizable Jazelle = Java acceleration

This was in the class notes (which I post), and in ARMv6

documentation.

5

Comment your Code!

• Comment your code!!!!!

Why?

I will take points off it you don’t.

Also helps other people looking at your code figure out

what’s going on. Including me the graded. Including

you trying to re-use some code a year from now.

Having your name and a description of what the overall

file and each function does doesn’t hurt.

Even fancier commenting conventions companies will

6

have for automated tools.

Mostly comment non-obvious stuff.

So for(i=0;i<10;i++) not so much.

But something like i=4.3+10*j; yes.

You can’t really over-comment (well you can, but it’s

harder to over-comment than under-comment)

7

C Review

In past years sometimes the reason a HW assignment

didn’t work was due to using C poorly rather than

misunderstandings of the desired algorithm.

• Loops in C

for(i=0;i<10;i++) {}
while(i<10) { i++}
do {} while(i<10);

• printf

8

See the man page

How print an integer? printf("%d",i);. Character?

String? floating point? More advanced formatting stuff

Escape characters like percent and quotes.

9

Common C Pitfalls

• Out of bounds in memory (see the a[5] example earlier.

Also a problem with malloc() memory, Valgrind can help

with that.

• Missing braces

i f (a==0)

b=2;

i f (a==0)

10

b=2;

c =3;

• = vs ==

i f (a=0) d o s o m e t h i n g i m p o r t a n t () ;

• Never ignore warnings from the compiler!

11

Debugging

• printf

• gdb

12

How Code Works

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)

13

Tools

• compiler: takes code, usually (but not always) generates

assembly

• assembler: GNU Assembler as (others: tasm, nasm,

masm, etc.)

creates object files

• linker: ld

creates executable files. resolves addresses of symbols.

shared libraries.

14

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction – 0xe0803080 == add r3,

r0, r0, lsl #1

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

15

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

16

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

17

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

18

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

19

