
ECE 471 – Embedded Systems
Lecture 10

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

20 September 2017

http://web.eece.maine.edu/~vweaver

Announcements

• How is HW#3 going?

1

HW2 Review

• Everyone seems to be accessing the Pi OK

If UK keyboard/etc run raspi-config

One benefit of a pi, is lots of people using it so google

very helpful.

• Be sure to follow directions!

• Comment your code!

• Also watch out for compiler warnings! (Though each

compiler version might have different warnings)

• Error handling!

2

• Most C code OK.

Be sure if it says print 20 lines that you do, not 21.

Colors seem not to be a problem.

• more info on ls. Looking for man. “info” or ls --help

• ls -a shows hidden files. Hidden files on UNIX

• Why use Linux? open-source, because it’s free. Not a

bad operating system overall.

3

ARM Instruction Set Encodings

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

◦ STM32L only has THUMB2

◦ Original Raspberry Pis do not have THUMB2

◦ Raspberry Pi 2/3 does have THUMB2

• THUMB-EE – extensions for running in JIT runtime

• AARCH64 – 64 bit. Relatively new. Completely different

from ARM32

4

Recall the ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

Data

Processing

Immediate value (if immediate)

ADD opcode

Immediate

5

THUMB

• Most instructions length 16-bit (a few 32-bit)

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• No prefix/conditional execution

• Only two arguments to opcodes

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

6

• Limited addressing modes: [rn,rm], [rn,#imm],

[pc|sp,#imm]

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• new push/pop instructions (subset of ldm/stm), neg (to

negate), asr,lsl,lsr,ror, bic (logic bit clear)

7

THUMB/ARM interworking

• See print string armthumb.s

• BX/BLX instruction to switch mode.

Sets/clears the T (thumb) flag in status register

If target is a label, always switchmode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can also switch modes with ldrm, ldm, or pop with PC

as a destination

(on armv7 can enter with ALU op with PC destination)

8

• Can use .thumb directive, .arm for 32-bit.

9

THUMB-2

• Extension of THUMB to have both 16-bit and 32-bit

instructions

• The 32-bit instructions are not the standard 32-bit ARM

instructions.

• Most 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

• rsc (reverse subtract with carry) removed

• Most cannot have PC as src/dest

10

• Shifts in ALU instructions are by constant, cannot shift

by register like in arm32

• THUMB-2 code can assemble to either ARM-32 or

THUMB2

The assembly language is compatible.

Common code can be written and output changed at

time of assembly.

• Instructions have “wide” and “narrow” encoding.

Can force this (add.w vs add.n).

• Need to properly indicate “s” (set flags).

On regular THUMB this is assumed.

11

THUMB-2 Coding

• See test thumb2.s

• Use .syntax unified at beginning of code

• Use .arm or .thumb to specify mode

12

New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movt – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz – compare and branch if zero; only jumps forward

13

Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

rotate bottom 7 bits|0x80 right by top 5 bits

01000 -- 1bcdefgh 00000000 00000000 00000000

...

11111 -- 00000000 00000000 00000001 bcdefgh0

14

Compiler

• Original RASPBERRY PI DOES NOT SUPPORT

THUMB2

• gcc -S hello world.c

By default is arm32

• gcc -S -march=armv5t -mthumb hello world.c

Creates THUMB (won’t work on Raspberry Pi due to

HARDFP arch)

• -mthumb -march=armv7-a Creates THUMB2

15

IT (If/Then) Instruction

• Allows limited conditional execution in THUMB-2 mode.

• The directive is optional (and ignored in ARM32)

the assembler can (in-theory) auto-generate the IT

instruction

• Limit of 4 instructions

16

Example Code

it cc

addcc r1,r2

itete cc

addcc r1,r2

addcs r1,r2

addcc r1,r2

addcs r1,r2

17

ll Example Code

ittt cs @ If CS Then Next plus CS for next 3

discrete_char:

ldrbcs r4,[r3] @ load a byte

addcs r3,#1 @ increment pointer

movcs r6,#1 @ we set r6 to one so byte

bcs.n store_byte @ and store it

offset_length:

18

AARCH64

• 32-bit fixed instruction encoding

• 31 64-bit GP registers (x0-x30), zero register (x30)

• PC is not a GP register

• only branches conditional

• no load/store multiple

• No thumb

19

Code Density

• Overview from my ll ICCD’09 paper

• Show code density for variety of architectures, recently

added Thumb-2 support.

• Shows overall size, though not a fair comparison due to

operating system differences on non-Linux machines

20

Code Density – overall

ia
64

al
ph

a

R
iS

C

pa
-ri

sc
m

ip
s

m
ic
ro

bl
az

e

m
88

k

sp
ar

c

Pow
er

PC

ar
m

.e
ab

i

ris
cv

64
-im

m
ic
ro

m
ip
s

65
02

ris
cv

32
-im

m
ip
s1

6

ar
m

64
s3

90

x8
6_

64

ris
cv

64
-im

c

x8
6_

x3
2

sh
3

i3
86

ris
cv

32
-im

c
va

x

TH
U
M

B
18

02

av
r3

2

Thu
m

b-
2

cr
is
v3

2
z8

0

pd
p-

11

m
68

k

80
86

0

512

1024

1536

2048

2560

3072

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

21

lzss compression

• Printing routine uses lzss compression

• Might be more representative of potential code density

22

Code Density – lzss

R
iS

C
ia
64

al
ph

a

pa
-ri

sc
m

ip
s

m
ic
ro

bl
az

e
65

02

sp
ar

c

m
88

k
s3

90

ris
cv

32
-im

ris
cv

64
-im

ar
m

.e
ab

i

Pow
er

PC

pd
p-

11 z8
0

ar
m

64

m
ip
s1

6

ris
cv

32
-im

c

ris
cv

64
-im

c

m
ic
ro

m
ip
s

av
r3

2
18

02 sh
3

TH
U
M

B
va

x

Thu
m

b-
2

x8
6_

64

x8
6_

x3
2

cr
is
v3

2
i3
86

80
86

m
68

k
0

64

128

192

256

320

384

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

23

Put string example

.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

ldr r1 ,= hello

bl print_string @ Print Hello World

ldr r1 ,= mystery

bl print_string @

ldr r1 ,= goodbye

bl print_string /* Print Goodbye */

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in eax

swi 0x0 @ and exit

24

#====================

print string

#====================

Null -terminated string to print pointed to by r1

r1 is trashed by this routine

print_string:

push {r0 ,r2 ,r7 ,r10} @ Save r0 ,r2 ,r7 ,r10 on stack

mov r2 ,#0 @ Clear Count

count_loop:

add r2 ,r2 ,#1 @ increment count

ldrb r10 ,[r1 ,r2] @ load byte from address r1+r2

cmp r10 ,#0 @ Compare against 0

bne count_loop @ if not 0, loop

mov r0 ,# STDOUT @ Print to stdout

mov r7 ,# SYSCALL_WRITE @ Load syscall number

swi 0x0 @ System call

pop {r0 ,r2 ,r7 ,r10} @ pop r0 ,r2 ,r7 ,r10 from stack

mov pc ,lr @ Return to address stored in

25

@ Link register

.data

hello: .string "Hello World !\n" @ includes null at end

mystery: .byte 63,0x3f ,63,10,0 @ mystery string

goodbye: .string "Goodbye !\n" @ includes null at end

26

