
ECE 471 – Embedded Systems
Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 October 2017

http://web.eece.maine.edu/~vweaver


Announcements

• Midterm is Thursday.

1



Homework #4 Review

• Blink OK – only issue write after close.

• Questions

◦ 5.a Why usleep? Not udelay, how come no one

caught this past three years? Less resources (not

busy sleeping), cross-platform (not speed-of-machine-

dependent), compiler won’t remove, other things can

run, power saving

◦ 5.b Layer of abstraction. In this case, not having

to bitbang the interface or know low-level addresses,

2



portability among machines. Note: You can use high-

level languages w/o an OS.

◦ 5.c Limitations : higher overhead, not all features

exposed, uncertain timing.

superuser permissions? when no OS you run everything

as super user, though this depends on HW and is

complicated.

◦ 5.d. Web browser part of OS? Microsoft law suit.

Interesting comments on google/chrome

◦ 6.a Machines from dmesg: Pi2 (3) Pi3 (11) dmesg a

3



good place to find error messages, etc.
◦ 6.b Kernel versions. Current Linus kernel (upstream)

is 4.13/4.14-rc3
Uname syscall, what the parts mean

Linux rasp-pi 4.1.19+ #858 Tue Mar 15 15:52:03 GMT 2016 armv6l GNU/Linux\\

Linux orvavista 4.5.0-2-amd64 #1 SMP Debian 4.5.5-1 (2016-05-29) x86_64 GNU/Linux\\

2017: 4.1.9 (1) 4.9.35 (3) 4.9.41 (6) 4.4.38 (2)

◦ 6.c. Disk space. Why -h? Human readable. what

does that mean? Why is it not the default? At least

Linux defaults to 1kB blocks (UNIX was 512) Lots of

large disks.

4



Midterm Review

You can bring 1 page (8.5”x11”) of notes if you want.

• Be sure you know the four characteristics of an embedded

system, and can make an argument about whether a

system is one or not.

◦ Inside of something (embedded)

◦ Fixed-purpose

◦ Resource constrained

◦ Real time constraints

• Benefits/downsides of using an operating system on an

5



embedded device

◦ Cost, time to market, helper libraries, overhead, timing

• ARM assembly language

◦ Have you look at some assembly language code and

know what it is doing

◦ Only really need to know some of the more common

instructions (add, cmp, mov, ldr, strb, swi). Also be

aware of conditional execution.

• Code Density

◦ Why is dense code good in embedded systems?

◦ What changes were needed to ARM32 to make it fit

6



into 16-bit THUMB?

• GPIO & i2c

◦ Know some of its limitations (speeds, length of wires,

number of wires, etc)

◦ Don’t need to know the raw protocol

◦ Know the Linux interface (open, ioctl, write) and be

familiar with how those system calls work

7



Booting a System

8



Firmware

• What is firmware?

9



Firmware

Provides booting, configuration/setup, sometimes provides

rudimentary hardware access routines.

Kernel developers like to complain about firmware authors.

Often mysterious bugs, only tested under Windows, etc.

• BIOS – legacy 16-bit interface on x86 machines

• UEFI – Unified Extensible Firmware Interface

ia64, x86, ARM. From Intel. Replaces BIOS

• OpenFirmware – old macs, SPARC

• LinuxBIOS

10



Boot Methods

Firmware can be quite complex.

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)

11



• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?

12



Bootloaders on ARM

• uBoot – Universal Bootloader, for ARM and under

embedded systems

• So both BIOS and bootloader like minimal OSes

13



Raspberry Pi Booting

• Unusual

• Small amount of firmware on SoC

• ARM 1176 brought up inactive (in reset)

• Videocore loads first stage from ROM

• This reads bootcode.bin from fat partition on SD card

into L2 cache. It’s actually a RTOS (real time OS in

own right “ThreadX”)

14



• This runs on videocard, enables SDRAM, then loads

start.elf

• This initializes things, the loads and boots Linux

kernel.img. (also reads some config files there first)

15


