
ECE 471 – Embedded Systems
Lecture 19

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

16 October 2017

http://web.eece.maine.edu/~vweaver


Announcements

• Issues on HW#6

Be sure you remember not to drive GPIO high, let float

high

Use the predefined code.

1



HW#5 Review

• Coding: Seemed to go OK

Error handling – exit, not write to not opened fd

Print all 1’s meant 88:88 not 11:11

• Comments: buffer[0] = (0x2 << 6) | 0x1;

• Raspberry Pi boot odd: GPU does it

• Fat32: gave lots of good reasons for Fat32, but the

reason boot partitions often use it is it’s simple enough

to be read by firmware at extreme early boot.

2



• Program that loads kernel and jumps to it is called the

bootloader

• Skip i2c – those addresses are reserved

• wc, diff, piping

3



Real Time Operating System

• Can it be hard real time?

• Simple ones can be mathematically provable

• Otherwise, it’s a best effort

4



Priority Based, like Vxworks

• Each task has priority 0 (high) to 255 (low)

• When task launched, highest priority gets to run

• Other tasks only get to run when higher is finished or

yields

• What if multiple of same priority? Then go round-robin

or similar

5



Real Time Linux

6



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

• Have been gradually merging changes upstream

7



Typical kernel, when can you pre-empt

• When user code running

• When a system call or interrupt happens

• When kernel code blocks on mutex (lock) or voluntarily

yields

• If a high priority task wants to run, and the kernel is

running, it might be hundreds of milliseconds before you

get to run

8



• Pre-empt patch makes it so almost any part of kernel can

be stopped (pre-empted). Also moves interrupt routines

into pre-emptible kernel threads.

9


