
ECE 471 – Embedded Systems
Lecture 21

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 October 2017

http://web.eece.maine.edu/~vweaver


Announcements

• Project coming

• Don’t forget SPI homework HW#7

1



HW#6 Review

• Code all worked for the most part

You’ll note the bitbang code is a lot slower, mostly

because we use usleep to do the delays and also the slow

GPIO interface. i2c is forgiving

• Compiler warnings – mostly due to static keyword

◦ Static on variable means global variable (keeps its

value) but local scope (only visible inside of function)

◦ Static on function means function is of local scope

(only visible in file)

2



symbol not exported

warning if you stop using the function

can be inlined (for speed)

• Questions:

◦ All the protocols? No reads. No clock-stretching. No

arbitration. No way to change address.

◦ Handle all errors? Again, no arbitration, etc.

◦ Brakes – hard real time?

◦ Tuner – soft real time

◦ Video – firm real time

◦ Interrupts. Doorbell.

3



◦ Yes command – mostly to answer things like fsck that

ask a lot of obvious questions.

Load testing, maybe, but that wasn’t really the original

design.

4



Project Preview

• Can work in groups

• Embedded system (any type, not just Pi)

• Written in any language (asm, C, python, C++, Java,

etc.)

• Do some manner of input and some manner of output

using the various capabilities we discussed

• I have a large amount of i2c, spi, and other devices that

5



you can borrow if you want to try anything interesting.

• Past projects: games, robots, weather stations, motor

controllers, music visualization, etc.

• Will be a final writeup, and then a 10 minute presentation

and demo in front of the class during last week of classes.

6



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

7



Typical kernel, when can you pre-empt

• When user code running

• When a system call or interrupt happens

• When kernel code blocks on mutex (lock) or voluntarily

yields

• If a high priority task wants to run, and the kernel is

running, it might be hundreds of milliseconds before you

get to run

8



• Pre-empt patch makes it so almost any part of kernel can

be stopped (pre-empted). Also moves interrupt routines

into pre-emptible kernel threads.

9



Linux PREEMPT Kernel

• What latencies can you get? 10-30us on some x86

machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB and like)’ Slow

hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

• Priorities

◦ Linux Nice: -20 to 19 (lowest), use nice command

◦ Real Time: 0 to 99 (highest)

10



◦ Appears in ps as 0 to 139?

11



Changes to your code

• What do you do about unknown memory latency?

◦ mlockall() memory in, start threads and touch at

beginning, avoid all causes of pagefaults.

• What do you do about priority?

◦ Use POSIX interfaces, no real changes needed in code,

just set higher priority

◦ See the chrt tool to set priorities.

• What do you do about interrupts?

◦ See next

12



Interrupts

• Why are interrupts slow?

• Shared lines, have to run all handlers

• When can they not be pre-empted? IRQ disabled? If

a driver really wanted to pause 1ms for hardware to be

ready, would often turn off IRQ and spin rather than

sleep

• Higher priority IRQs? FIR on ARM?

• Top Halves / Bottom Halves

• Unrelated, but hi-res timers

13



Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

14



Other RTOSes

• Vxworks

• Neutrino

• Free RTOS

• Windows CE

• MongooseOS (recent LWN article?)

• ThreadX (in the Pi GPU)

15


