
ECE 471 – Embedded Systems
Lecture 26

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 November 2017

http://web.eece.maine.edu/~vweaver

Announcements

• HW#8 was due

• HW#9 was assigned, due in two weeks

• Project topics due

• Midterm Upcoming

1

Software Bugs (continued)

• Not all bugs are security issues

• Coding bugs can have disastrous effects

2

Spacecraft

• Mariner 1 (1962) – rocket off course due to

mis-transcribed specification into FORTRAN, missing

overbar

• Apollo 11 (1969) – landing on moon.

◦ 36k ROM (rope), 2k RAM, 70lbs, 55W, 5600 3-input

NOR

◦ Processor normally loaded with 85% load. DELTAH

program run which take 10%. But buggy radar device

was stealing 13% even though in standby mode.

3

◦ Multiple 1202 overload alarms

◦ Mini real-time OS with priority killed low-priority tasks

so things still worked.

• Ariane 5 Flight 501 (1996) – famous. $370 million.

◦ Old code copied from Ariane 4. Horizontal acceleration

◦ Could not trigger on Ariane 4 (accel never that large)

◦ Could trigger on more powerful Ariane 5

◦ Conversion from 64-bit float to 16-bit signed int

overflowed. Trap

◦ Primary guidance computer crashed

◦ Secondary computer, but ran same code, crashed

4

◦ Sent debug messages after crash, autopilot read those

as velocity data

◦ Destructed 37s after launch

◦ Written in ADA

• NASA Mars Polar Lander (1999)

◦ likely mistook turbulence vibrations for landing and

shut off engine 40m above surface

• NASA Mars Climate Orbiter

◦ ground software using lbf (pound/foot) units, craft

expecting Newtons

• NASA Mars Spirit rover (2004)

5

◦ temporarily disabled due to too many files on flash

drive

◦ Constantly rebooting

◦ Radio could understand some commands directly,

could reboot with flash disabled.

◦ Fixed when deleted some unneeded files.

◦ Eventually reformat.

◦ Issue is 90 day design period, lasted years (until 2010)

• ExoMars Schiaparelli Lander (2016)

◦ Bad data to inertial measurement unit for 1 second

◦ thought this meant it was below ground level, released

6

parachute when still 3.7km up.

◦ Had valid data from radar

7

Medical Example

• Therac-25 radiation treatment machine, 1985-1987

• 6 accidents, patients given 100x dose. Three died

High power beam activated w/o spreader too.

Older machines had hardware interlock, this one in

software. Race condition. If 8-bit counter overflow just

as entering manual over-ride, it would happen.

• Triggering the bug

◦ To trigger, had to press X (mistake), up (to correct),

E (to set proper) then ”Enter” all within 8 seconds.

8

This was considered an improbable series of keypresses.

◦ This missed during testing as it took a while for

operators to get used to using machines enough to

type that fast.

◦ Used increment rather than move to set flag, this

meant sometimes it wrapped from 255 to 0, disabling

safety checks

◦ Written in Assembly Language

Things that went wrong with design

◦ Software not independently reviewed

◦ No reliability modeling or risk management

9

◦ Something wrong: Printed “MALFUNCTION” and

error number 1 to 64 which was not documented in

manual. Press P to clear.

◦ Operators not believe complaints from patients.

◦ The setup was not tested until after it was installed at

hospital.

◦ cut-and-pasted software from earlier model that had

hardware interlocks

◦ Concurrent (parallel) operation with race conditions

10

Medical Response

• IEC 62304 – medical device software – software lifecycle

◦ Quality management system – establish the

requirements needed for such a device, then design

methods to be sure it meets these

◦ Avoid reusing software of unknown pedigree (don’t just

cut and paste from stackoverflow)

◦ Risk management – determining what all the risks

involved are, then determine ways to avoid or minimize

them

◦ Software safety classification

11

Class A: no injury possible

Class B: Nonserious injury possible

Class C: serious injury or death possible

Software sorted into these areas. Class A do not require

the same precautions as the others.

12

Financial

• Knight Capital. Upgrade 7 of 8 machines, missed last.

Re-used a flag definition with new software. Caused

massive selloff, $440 million

13

Power

• 2003 Blackout

◦ Power plant fail. Cause more current down

transmission lines in Ohio. Heat, expand, touch tree,

short out.

◦ Race condition in Unix XA/21 management system,

so alarms not go off

◦ Eventually primary system fail as too many alarms

queue up

◦ Backup server also fail

14

◦ During failure, screens take 59s (instead of 1s) to

update

◦ Blackout of most of NY and a lot of north east.

15

Good Design Practices

16

Code Safety Standards

• Avionics: DO-178C (1992 for B)

• Industrial: IEC 61508 (1998)

• Railway: CENELEC EN 50128 (2001)

• Nuclear: IEC 61513 (2001)

• Medical: IEC 62304 (2006)

• Automotive: ISO 26262 (2011)

17

Other notes

• Top down vs Bottom up Design

Spec out whole thing and how they work first

Start with core part and just keep adding to it until it

works

• Requirements/Specifications?

18

Writing Good (Embedded) C Code

• Various books. Common one: MISRA: Guidelines for

the Use of the C Language in Critical Systems

• Comment your code!

• Strict, common code formatting (indentation)

• More exact variable types (int32 t not int) Size can vary

on machine, and on operating system

• Subset to avoid undefined behavior

19

• Tool that enforces the coding standards

• Good to write safe code even if it isn’t meant for a safe

application. Why? Good practice. Also who knows who

or when your code might be copied into another project.

20

Good Test Practices

• Unit testing

• Test Driven Development – tests written before the code

happens, needs to pass the tests before done

• Fuzzing

• Documentation

Source control

21

Space Shuttle Design

• HAL/S high-order assembly language (high-level

language similar to PL/I)

• PASS software – runs tasks. Too big to fit in memory

at once

• BFS – backup flight software. Bare minimum to takeoff,

stay in orbit, safely land, fits in memory, monitors pASS

during takeoff/landing Written by completely different

team.

22

• 28 months to develop new version

• IBM

• originally 424k of core each

• Extensive verification. One internal pass, one external

• 4 computers running PASS, one running BFS

• Single failure mission can continue; still land with two

failures

• 4 computers in lock-step, vote, defective one kicked out

23

