
ECE 471 – Embedded Systems
Lecture 28

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 November 2017

http://web.eece.maine.edu/~vweaver

Announcements

• Project status report due Monday. Not long:

◦ A one-line statement of your project idea

◦ A summary of the project you’ve made so far

◦ List any parts you need that you don’t have yet

◦ List if you’re willing to present early (Monday of

Wednesday vs Friday) (there will be some bonus for

presenting early)

• Midterm will hopefully be back Monday

• Website issue was resolved

1

Supercomputing Review

• Back from SC’17

• Significant ARM presence

• Talk about machines in Top500 top500.org and why it

might be good to use embedded processors

• Talk about the Pi cluster paper

◦ Pi Clusters, bunch at SC this year

◦ Our big difference, power measurement and LED

displays

◦ Some others with displays now

2

top500.org

◦ Work was done with undergrad. There are

opportunities for undergrad research, CUGR and REU.

◦ Look into updating to Pi3, Linpack crashes it.

3

Wii Nunchuck

• Fairly easy to interface

• Put onto i2c bus. Device 0x52

• Send handshake to initialize. Use longer one

(0xf0/0x55/0xfb/0x00) not the simpler one you might

find(0x40/0x00). This works on generic nunchucks and

possibly also disables encryption of results.

• To get values, send 0x00, usleep a certain amount, and

read 6 bytes. This includes joy-x, joy-x, accelerometer

4

x/y/z and c and z button data. More info can be found

online.

byte0 = joy-x, byte1 = joy-y, byte2 = top8 acc x, byte3

= top8 acc y, byte4 = top8 acc z, byte 5 is bottom 2

z,y,x then button c and z (inverted?)

5

Linux and Keyboard

• Old ps/2 keyboard just a matrix of keys, controlled by a

small embedded processor.

Communication via a serial bus. Returns “keycodes”

when keypress and release and a few others.

• Many modern keyboards are USB, which requires full

USB stack. To get around needing this overhead (for

BIOS etc) support bit-bang mode. OS usually has

abstraction layer that supports USB keyboards same as

old-style

6

• Linux assumes “CANONICAL” input mode, i.e. like a

teletype. One line at a time, blocking input, wait until

enter pressed.

• You can set non-CANONICAL mode, async input, and

VMIN of 1 to get reasonable input for a game. Arrow

keys are reported as escape sequences (ESCAPE-[-A for

up, for example).

• Even lower-level you can access “RAW” mode which

gives raw keycode events, etc.

• There are libraries like ncurses that abstract this a bit.

Also GUI and game libraries (SDL).

7

Faking Linux Input Events

• How to insert input events into Linux, i.e. have a

software program fake keyboard/mouse/joystick events.

• Linux supports a ”uinput” kernel driver that lets you

create user input.

• There is some info on a library that makes this easier

here: http://tjjr.fi/sw/libsuinput/

• It has examples for keyboard and mouse. Joystick should

be possible but there’s no sample code provided.

• Python wrappers seem to exist too.

8

http://tjjr.fi/sw/libsuinput/

System Busses

• Older busses often exposed CPU pins directly to

connector: Apple II, S-100, ISA

• This was not sustainable, if only because number of CPU

pins grew rapidly. Also speed issues.

9

Parallel vs Serial Busses

• Originally most busses were Parallel. More bits at a time

means higher bandwidth. IDE, Parallel Port, 32-bit PCI,

64-bit PCI

• Problems with parallel: keeping signals in sync. As

busses go faster, skew comes into things. Wire length

matters. Power issues with driving wide busses.

• Newer busses are serial: SATA, PCIe, USB, Firewire,

etc. Also advantage of having fewer wires to route.

• HPC users grumble about speed of PCIe

10

USB Bus

• USB 1.0 – 1996 – Low Speed 1.5Mbit/s (keyboard, etc),

Full Speed 12Mbit/s (disk)

• USB 1.1 –

• USB 2.0 – 2000 – High Speed 470MBit/s

• 2-5m cables

• 4 pins. 5V, GND, D+, D-. Differential signaling

(subtract). More resistant to noise.

11

• Micro connectors have extra pin for on-the-go (says if A

end or B end gnd vs v+)

• Unit load, 100ma. Can negotiate up to 500ma (more

USB 3.0)

• Up to 127 devices (by using hubs)

• Enumeration, vendor and device

12

USB Bus

• USB 3.0 – 2008 – SuperSpeed 5GBit/s (though hard to

hit that) Full Duplex (earlier half duplex)

• USB 3.1 – 2014 – SuperSpeed+ 10Gbit/s

• Backwards compatible, has 5 extra pins next to standard

micro with GND, SSTX+/- and SSRX+/- (full duplex)

• USB-C – 2014

24-pin: 4 power/ground pairs, two differential non-

super-speed pairs, four pairs of high-speed data bus, two

13

sideband pins, two pins for cable orientation

cables can be USB2, USB3, USB3.1, up to

5A(20V=100W) but 3A more common

wrong pullup can cause cable that damages hardware

14

USB Signaling

• Differential signaling, twisted pair, 90Ohm impedance

• Low+Full = 0V low, 3.3V high, not terminated

• High = 0V low, 400mV high, terminated with resistor

• SuperSpeed, separate lines, but original lines used to

config

• Host, 15k pulldown pulls data lines to 0 (nothing

connected, SE0)

15

• USB device pulls line high with 1.5k which overpowers

pulldown. Full bandwidth D+ high, low bandwidth D-

high

• J and K states.

• NRZI line coding – 0 signaled by J to K (switching

state). 1 signaled by leaving as is

• Bit stuffing – after six consecutive 1s must include 0

• starts with 8 bit synch – 00000001 which is KJKJKJKK.

Data then sent. End marked by 00J.

16

• Reset by 10ms SE0

• Highspeed uses ”chirping” to negotiate speeds, during

reset chirps J and K

• SuperSpeed uses 8b/10b encoding (limits bandwidth),

CRC, other features

• SuperSpeed+ uses 128b/132b encoding

• Example from Wikipedia CC0:

17

18

