
ECE 471 – Embedded Systems
Lecture 9

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 September 2018

http://web.eece.maine.edu/~vweaver

Announcements

• How is HW#3 going?

1

Notes from Last Time

• @ as comment

• # only if standalone on line (not at end)

• can use /* */ and //

• cannot use ;

2

HW3 Notes

• Writing int to string conversion is a complex test.

• Good reverse engineering experience. Block of code from

one of my older projects when I wasn’t quite as good at

ARM assembly.

• What does .lcomm do? Reserves region in the BSS.

.lcomm buffer,20 is similar to C char buffer[20]

• Went over algorithm. Need to divide by 10, put

remainder into array backwards, then keep dividing the

quotient. Also need to convert to ASCII.

3

• Corner cases: leading zero suppression?

• Dividing by 10 on system that has no divide? Use 32.32

fixed point multiply by 1/10. (429496730). ARM has

umull instruction that will do a 32x32 multiply and give

you the top half of the 64-bit result.

4

Setting Flags

• add r1,r2,r3

• adds r1,r2,r3 – set condition flag

• addeqs r1,r2,r3 – set condition flag and prefix

compiler and disassembler like addseq, GNU as doesn’t?

5

Conditional Execution

Why are branches bad?
i f (x == 5)

a+=2;
e l s e

b−=2;

cmp r1 , #5
bne e l s e
add r2 , r2 ,#2
b done

e l s e :
sub r3 , r3 ,#2

done :

6

ARM Instruction Set Encodings

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

◦ STM32L only has THUMB2

◦ Original Raspberry Pis do not have THUMB2

◦ Raspberry Pi 2/3 does have THUMB2

• THUMB-EE – extensions for running in JIT runtime

• AARCH64 – 64 bit. Relatively new. Completely different

from ARM32

7

Recall the ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

Data

Processing

Immediate value (if immediate)

ADD opcode

Immediate

8

THUMB

• Most instructions length 16-bit (a few 32-bit)

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• No prefix/conditional execution

• Only two arguments to opcodes

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

9

• Limited addressing modes: [rn,rm], [rn,#imm],

[pc|sp,#imm]

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• new push/pop instructions (subset of ldm/stm), neg (to

negate), asr,lsl,lsr,ror, bic (logic bit clear)

10

THUMB/ARM interworking

• See print string armthumb.s

• BX/BLX instruction to switch mode.

Sets/clears the T (thumb) flag in status register

If target is a label, always switchmode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can also switch modes with ldrm, ldm, or pop with PC

as a destination

(on armv7 can enter with ALU op with PC destination)

11

• Can use .thumb directive, .arm for 32-bit.

12

THUMB-2

• Extension of THUMB to have both 16-bit and 32-bit

instructions

• The 32-bit instructions are not the standard 32-bit ARM

instructions.

• Most 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

• rsc (reverse subtract with carry) removed

• Most cannot have PC as src/dest

13

• Shifts in ALU instructions are by constant, cannot shift

by register like in arm32

• THUMB-2 code can assemble to either ARM-32 or

THUMB2

The assembly language is compatible.

Common code can be written and output changed at

time of assembly.

• Instructions have “wide” and “narrow” encoding.

Can force this (add.w vs add.n).

• Need to properly indicate “s” (set flags).

On regular THUMB this is assumed.

14

THUMB-2 Coding

• See test thumb2.s

• Use .syntax unified at beginning of code

• Use .arm or .thumb to specify mode

15

New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movt – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz – compare and branch if zero; only jumps forward

16

Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

rotate bottom 7 bits|0x80 right by top 5 bits

01000 -- 1bcdefgh 00000000 00000000 00000000

...

11111 -- 00000000 00000000 00000001 bcdefgh0

17

Compiler

• Original RASPBERRY PI DOES NOT SUPPORT

THUMB2

• gcc -S hello world.c

By default is arm32

• gcc -S -march=armv5t -mthumb hello world.c

Creates THUMB (won’t work on Raspberry Pi due to

HARDFP arch)

• -mthumb -march=armv7-a Creates THUMB2

18

