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Announcements

• HW#4 was posted.

• Permissions!

Unless your user is configured to have gpio permissions

you’ll have to run as root or use sudo. raspbian there’s

a “gpio” group which has permissions sudo addgroup

vince gpio

udev is responsible for updating permissions as the files

are created and it can take a fraction of a second to

detect and update.
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This might not work if you have an older version of

Raspbian

• What should your code do if permission is denied?

Not crash, certainly.
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Homework 2

• Comment your code!

• check argc before accessing argv
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Homework 3

• Be sure to put your name in the README!

• Should do HW, even if you only do the short-answer

part. Good practice for midterm

• Comment code!

Make sure comments makes sense

Also high level comments are best:

add r1,r2,#0x30 @ add 48 to r2 and store in r1

vs @ convert integer result to ASCII

• print number() code
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• No conversion to binary, number is in binary in register.

• The divide by 10 code is almost more interesting.

• Good to be able to look at code and see what doing.

Reverse engineering, but also debugging code you don’t

have the source to.
print_number:

push {r10 ,LR} // Save registers

ldr r10 ,= buffer // what does = mean? where is buffer?

add r10 ,r10 ,#10 // why 10 bytes?

divide:

bl divide_by_10 // why no div instruction?

add r8 ,r8 ,#0x30 // why add 0x30?

strb r8 ,[r10],#-1 // why moving backwards?

adds r0 ,r7 ,#0 //

bne divide //

write_out:

add r1 ,r10 ,#1 // why adjust pointer?
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bl print_string //

pop {r10 ,LR} //

mov pc ,lr //

how would you convert to hex? Why 10 chars reserved?
divide_by_10:

ldr r4 ,=429496730 @ 1/10 * 2^32

sub r5 ,r0 ,r0 ,lsr #30

umull r8 ,r7 ,r4 ,r5 @ {r8,r7}=r4*r5

mov r4 ,#10 @ calculate remainder

mul r8 ,r7 ,r4

sub r8 ,r0 ,r8

mov pc ,lr

• strlen code example, many ways to do this

mov r2 ,#0
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p r i n t l o o p :

l d r b r0 , [ r1 , r 2 ]

add r2 , r2 ,#1

cmp r0 ,#0

bne p r i n t l o o p

• Can see why THUMB2 is nicer than THUMB (assembler

does most of work)

• THUMB code should have been less.

You need to run strip on this to see it. Why?

Debug info, including extra thumb debug as well as the

longer filename.

7



You can use readelf -a and readelf -s to see the

space the various segments take up.

Look at executables, *not* the C source code.
arch unstripped stripped

arm32 1424 620

thumb 1444 600

thumb2 1420 596

C 8156 5608

C/thumb2 8144 5612

C static 569288 484620
You would think THUMB2 would be much smaller,

but the assembler makes some poor decisions about
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wide/narrow instructions.

Reference my LL work

C code is larger, but also remember to include the C
library:

ls -lart /lib/arm-linux-gnueabihf/libc-2.24.so

-rwxr-xr-x 1 root root 1234700 Jan 14 2018 /lib/arm-linux-gnueabihf/libc-2.24.so

There are embedded C libraries, musl, newlib, uclibc,

which are much smaller and often used in embedded

systems.

• Illegal instruction error usually because there are *two*
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calls to print string, need to make sure both are blx

• Comments: meaningful! Not just add 10 to r10 or add

48 to r3

• Not sure why STDIN something cool not working for

people

• cal. Missing days. Julian to Gregorian calendar. People

sad who paid weekly but paid rent monthly.

Be careful using Google.
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Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards

in ECE271.

• Compile code

• Prepare for upload (hexbin?)

• Upload into FLASH

• Boots to offset
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• Setup, flat memory (usually), stack at top, code near

bottom, IRQ vectors

• Handle Interrupts

• Must do I/O directly (no drivers)

Although if lucky, can find existing code.

• Code is specific to the hardware you are on
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Instead, one can use an Operating System
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Why Use an Operating System?

• Provides Layers of Abstraction

◦ Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

◦ Abstract software: with VM get linear address space,

same system calls on all systems

• Other benefits:

◦ Multi-tasking / Multi-user
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◦ Security, permissions (Linus dial out onto /dev/hda)

◦ Common code in kernel and libraries, no need to re-

invent

◦ Handle complex low-level tasks (interrupts, DMA,

task-switching)

• Abstraction has a cost

◦ Higher overhead (speed)

◦ Higher overhead (memory)

◦ Unknown timing
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What’s included with an OS

• kernel / drivers – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.
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Bypassing Linux to hit hardware directly

• Linux does not support things like pullups, but people

have written code that will poke the relevant bits directly.
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Bypassing Linux for speed

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Trying to generate fastest GPIO square wave.
shell gpio util 40Hz
shell sysfs 2.8kHz

Python WiringPi 28kHz
Python RPi.GPIO 70kHz

C WiringPi 4.6MHz
C libbcm2835 5.4MHz
C Rpi “Native” 22MHz
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