
ECE 471 – Embedded Systems
Lecture 12

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

1 October 2018

http://web.eece.maine.edu/~vweaver

Announcements

• HW#4 was posted.

• Permissions!

Unless your user is configured to have gpio permissions

you’ll have to run as root or use sudo. raspbian there’s

a “gpio” group which has permissions sudo addgroup

vince gpio

udev is responsible for updating permissions as the files

are created and it can take a fraction of a second to

detect and update.

1

This might not work if you have an older version of

Raspbian

• What should your code do if permission is denied?

Not crash, certainly.

2

Homework 2

• Comment your code!

• check argc before accessing argv

3

Homework 3

• Be sure to put your name in the README!

• Should do HW, even if you only do the short-answer

part. Good practice for midterm

• Comment code!

Make sure comments makes sense

Also high level comments are best:

add r1,r2,#0x30 @ add 48 to r2 and store in r1

vs @ convert integer result to ASCII

• print number() code

4

• No conversion to binary, number is in binary in register.

• The divide by 10 code is almost more interesting.

• Good to be able to look at code and see what doing.

Reverse engineering, but also debugging code you don’t

have the source to.
print_number:

push {r10 ,LR} // Save registers

ldr r10 ,= buffer // what does = mean? where is buffer?

add r10 ,r10 ,#10 // why 10 bytes?

divide:

bl divide_by_10 // why no div instruction?

add r8 ,r8 ,#0x30 // why add 0x30?

strb r8 ,[r10],#-1 // why moving backwards?

adds r0 ,r7 ,#0 //

bne divide //

write_out:

add r1 ,r10 ,#1 // why adjust pointer?

5

bl print_string //

pop {r10 ,LR} //

mov pc ,lr //

how would you convert to hex? Why 10 chars reserved?
divide_by_10:

ldr r4 ,=429496730 @ 1/10 * 2^32

sub r5 ,r0 ,r0 ,lsr #30

umull r8 ,r7 ,r4 ,r5 @ {r8,r7}=r4*r5

mov r4 ,#10 @ calculate remainder

mul r8 ,r7 ,r4

sub r8 ,r0 ,r8

mov pc ,lr

• strlen code example, many ways to do this

mov r2 ,#0

6

p r i n t l o o p :

l d r b r0 , [r1 , r 2]

add r2 , r2 ,#1

cmp r0 ,#0

bne p r i n t l o o p

• Can see why THUMB2 is nicer than THUMB (assembler

does most of work)

• THUMB code should have been less.

You need to run strip on this to see it. Why?

Debug info, including extra thumb debug as well as the

longer filename.

7

You can use readelf -a and readelf -s to see the

space the various segments take up.

Look at executables, *not* the C source code.
arch unstripped stripped

arm32 1424 620

thumb 1444 600

thumb2 1420 596

C 8156 5608

C/thumb2 8144 5612

C static 569288 484620
You would think THUMB2 would be much smaller,

but the assembler makes some poor decisions about

8

wide/narrow instructions.

Reference my LL work

C code is larger, but also remember to include the C
library:

ls -lart /lib/arm-linux-gnueabihf/libc-2.24.so

-rwxr-xr-x 1 root root 1234700 Jan 14 2018 /lib/arm-linux-gnueabihf/libc-2.24.so

There are embedded C libraries, musl, newlib, uclibc,

which are much smaller and often used in embedded

systems.

• Illegal instruction error usually because there are *two*

9

calls to print string, need to make sure both are blx

• Comments: meaningful! Not just add 10 to r10 or add

48 to r3

• Not sure why STDIN something cool not working for

people

• cal. Missing days. Julian to Gregorian calendar. People

sad who paid weekly but paid rent monthly.

Be careful using Google.

10

Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards

in ECE271.

• Compile code

• Prepare for upload (hexbin?)

• Upload into FLASH

• Boots to offset

11

• Setup, flat memory (usually), stack at top, code near

bottom, IRQ vectors

• Handle Interrupts

• Must do I/O directly (no drivers)

Although if lucky, can find existing code.

• Code is specific to the hardware you are on

12

Instead, one can use an Operating System

13

Why Use an Operating System?

• Provides Layers of Abstraction

◦ Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

◦ Abstract software: with VM get linear address space,

same system calls on all systems

• Other benefits:

◦ Multi-tasking / Multi-user

14

◦ Security, permissions (Linus dial out onto /dev/hda)

◦ Common code in kernel and libraries, no need to re-

invent

◦ Handle complex low-level tasks (interrupts, DMA,

task-switching)

• Abstraction has a cost

◦ Higher overhead (speed)

◦ Higher overhead (memory)

◦ Unknown timing

15

What’s included with an OS

• kernel / drivers – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.

16

Bypassing Linux to hit hardware directly

• Linux does not support things like pullups, but people

have written code that will poke the relevant bits directly.

17

Bypassing Linux for speed

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Trying to generate fastest GPIO square wave.
shell gpio util 40Hz
shell sysfs 2.8kHz

Python WiringPi 28kHz
Python RPi.GPIO 70kHz

C WiringPi 4.6MHz
C libbcm2835 5.4MHz
C Rpi “Native” 22MHz

18

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

