
ECE 471 – Embedded Systems
Lecture 19

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

16 October 2017

http://web.eece.maine.edu/~vweaver


Announcements

• Project handout posted to website

1



Project Preview

• Can work in groups

• Embedded system (any type, not just Pi)

• Written in any language (asm, C, python, C++, Java,

etc.)

• Do some manner of input and some manner of output

using the various capabilities we discussed

• I have a large amount of i2c, spi, and other devices that

you can borrow if you want to try anything interesting.

• Past projects: games, robots, weather stations, motor

2



controllers, music visualization, etc.

• Will be a final writeup, and then a short presentation and

demo in front of the class during last week of classes.

• Can compliment another project, but must have some

original code

3



Common OS strategies

• Event driven – have priorities, highest priority pre-empts

lower

• Time sharing – only switch at regular clock time, round-

robin

4



Scheduler example

• Static: Rate Monotonic Scheduling – shortest job goes

first

• Dynamic: Earliest deadline first

• Three tasks come in. a. finish in 10s, 4 long. b. finish

in 3, 2 long, c. finish in 5, 1 long

• In order they arrive, aaaabbccc bad for everyone

• RMS: cbbbaaaa works

5



• EDF: bbbcaaaa also works.

• Lots of information on various scheduling algorithms

6



Locking

• When shared hardware/software and more than one thing

might access at once

• Multicore: thread 1 read temperature, write to

temperature variable

thread 2 read temperature variable to write to display

let’s say it’s writing 3 digit ASCII. Goes from 79 to 80.

Will you always get 79 or 80? Can you get 70 or 89?

• How do you protect this? With a lock. Special data

structure, allows only one access to piece of memory,

7



others have to wait.

• Can this happen on single core? Yes, what about

interrupts.

• Implemented with special instructions, in assembly

language

• Usually you will use a library, like pthreads

• mutex/spinlock

• Atomicity

8



Priority Inversion Example

• Task priority 3 takes lock on some piece of hardware

(camera for picture)

• Task 2 fires up and pre-empts task 3

• Task 1 fires up and pre-empts task 1, but it needs same

HW as task 3. Waits for it. It will never get free.

(camera for navigation?)

• Space probes have had issues due to this.

9



Real Time Operating System

• Can it be hard real time?

• Simple ones can be mathematically provable

• Otherwise, it’s a best effort

10



Priority Based, like Vxworks

• Each task has priority 0 (high) to 255 (low)

• When task launched, highest priority gets to run

• Other tasks only get to run when higher is finished or

yields

• What if multiple of same priority? Then go round-robin

or similar

11



Is Regular Linux a RTOS

• Not really

• Can do priorities (“nice”) but the default ones are not

RT.

12



Real Time Linux

• Project to have a small supervisor RTOS and run Linux

as a process

• Code that needed a compatible OS interface could call

into this process-Linux, but it could always be pre-

empted

• Not supported anymore?

13



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

• Have been gradually merging changes upstream

14



Typical kernel, when can you pre-empt

• When user code running

• When a system call or interrupt happens

• When kernel code blocks on mutex (lock) or voluntarily

yields

• If a high priority task wants to run, and the kernel is

running, it might be hundreds of milliseconds before you

get to run

15



• Pre-empt patch makes it so almost any part of kernel can

be stopped (pre-empted). Also moves interrupt routines

into pre-emptible kernel threads.

16


