
ECE 471 – Embedded Systems
Lecture 22

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 October 2018

http://www.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#7

1



Computer Security
and why it matters for embedded systems

• Most effective security is being unconnected from the

world and locked away in a box. Until recently most

embedded systems matched that.

• Modern embedded systems are increasingly connected

to networks, etc. Embedded code is not necessarily

prepared for this.

• Internet of Things

2



The Problem

• Untrusted inputs from user can be hostile.

• Users with physical access can bypass most software

security.

3



What can an attacker gain?

• Fun / Mischief

• Profit

• A network of servers that can be used for illicit purposes

(SPAM, Warez, DDOS)

• Spying on others (companies, governments, etc)

4



Sources of Attack

• Untrusted user input

Web page forms

Keyboard Input

• USB Keys (CD-ROMs)

Autorun/Autostart on Windows

Scatter usb keys around parking lot, helpful people plug

into machine.

• Network

5



cellphone modems

ethernet/internet

wireless/bluetooth

• Backdoors

Debugging or Malicious, left in place

• Brute Force – trying all possible usernames/passwords

6



Types of Compromise

• Crash

“ping of death”

• DoS (Denial of Service)

• User account compromise

• Root account compromise

• Privilege Escalation

7



• Rootkit

• Re-write firmware? VM? Above OS?

8



Unsanitized Inputs

• Using values from users directly can be a problem if

passed directly to another process

• If data (say from a web-form) directly passed to a UNIX

shell script, then by including characters like ; can issue

arbitrary commands: system("rm %s\n",userdata);

• SQL injection attacks; escape characters can turn

a command into two, letting user execute arbitrary

SQL commands; xkcd Robert ’); DROP TABLE

Students;--

9



Buffer Overflows

• User (accidentally or on purpose) copies too much data

into a fixed sized buffer.

• Data outside expected area gets over-written. This can

cause a crash (best case) or if user carefully constructs

code, can lead to user taking over program.

10



Buffer Overflow Example

void function(int *values , int size) {

int a[10];

memcpy(a,values ,size);

return;

}

Maps to
push {lr}

sub sp ,#44

memcpy

add sp ,#44

pop {pc}

11



a[0]

a[1]

a[2]

a[3]

a[4]

a[6]

a[5]

a[7]

a[8]

a[9]

link register

Stack pointer before entry

Stack pointer after prolog

A value written to a[11] overwrites the saved link register.

If you can put a pointer to a function of your choice there

you can hijack the code execution, as it will be jumped to

at function exit.

12



Mitigating Buffer Overflows

• Extra Bounds Checking / High-level Language (not C)

• Address Space Layout Randomization

• Putting lots of 0s in code (if strcpy is causing the

problem)

• Running in a “sandbox”

13



Dangling Pointer / Null Pointer
Dereference

• Typically a NULL pointer access generates a segfault

• If an un-initialized function pointer points there, and

gets called, it will crash. But until recently Linux allowed

users to mmap() code there, allowing exploits.

• Other dangling pointers (pointers to invalid addresses)

can also cause problems. Both writes and executions can

cause problems if the address pointed to can be mapped.

14



Privilege Escalation

• If you can get kernel or super-user (root) code to jump

to your code, then you can raise privileges and have a

“root exploit”

• If a kernel has a buffer-overrun or other type of error and

branches to code you control, all bets are off. You can

have what is called “shell code” generate a root shell.

• Some binaries are setuid. They run with root privilege

but drop them. If you can make them run your code

15



before dropping privilege you can also have a root exploit.

Tools such as ping (requires root to open raw socket),

X11 (needs root to access graphics cards), web-server

(needs root to open port 80).

16



Information Leakage

• Can leak info through side-channels

• Detect encryption key by how long other processes take?

Power supply fluctuations? RF noise?

• Timing attacks

• Meltdown and Spectre

17



Finding Bugs

• Source code inspection

• Watching mailing lists

• Static checkers (coverity, sparse)

• Dynamic checkers (Valgrind). Can be slow.

• Fuzzing

18


