
ECE471: Embedded Systems – Homework 6
Direct (bit-bang) i2c Access

Due: Friday, 25 October 2019, 1:00pm EDT

1. Use your Raspberry Pi. In addition you will need the 4x7 segment LED display used in Homework 5.

2. Hook up the display just as you did in Homework 5.

You can use Figure 1 and Table 1 for guidance.
As a reminder: 3.3V to +, GND to -, SDA to D, and SCL to C.

Camera

Pin1 Pin2

Composite

Audio

HDMI

Power

Pin25 Pin26

Ethernet

USB

Audio/Video

Pin1 Pin2

Ethernet

USB USB

Power

HDMI

Audio/Video

Pin1 Pin2

Power

HDMI

HDMI

USB USB
Ethernet

Figure 1: Location of header on Raspberry Pi Model 1B, 1B+/2/3, 4B

Table 1: Raspberry Pi Header Pinout
3.3V 1 2 5V

GPIO2 (SDA) 3 4 5V
GPIO3 (SCL) 5 6 GND

GPIO4 (1-wire) 7 8 GPIO14 (UART_TXD)
GND 9 10 GPIO15 (UART_RXD)

GPIO17 11 12 GPIO18 (PCM_CLK)
GPIO27 13 14 GND
GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24
GPIO10 (MOSI) 19 20 GND

GPIO9 (MISO) 21 22 GPIO25
GPIO11 (SCLK) 23 24 GPIO8 (CE0)

GND 25 26 GPIO7 (CE1)

ID_SD (EEPROM) 27 28 ID_SC (EEPROM)
GPIO5 29 30 GND
GPIO6 31 32 GPIO12

GPIO13 33 34 GND
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20

GND 39 40 GPIO21



3. Getting the Code
The display is run by a ht16k33 chip. You can get the datasheet here:
http://www.adafruit.com/datasheets/ht16K33v110.pdf

Download the template code from the ECE471 website:
http://web.eece.maine.edu/~vweaver/classes/ece471/ece471_hw6_code.tar.gz

Uncompress it with tar -xzvf ece471_hw6_code.tar.gz

Some notes on the file layout:
Note that there are multiple code and header files provided this time. In software engineering, it is
often considered bad form to just have one large source code file with everything in it. This can be
hard to navigate and also difficult to collaborate with others when everyone is working on one large
file.

To split things up, one splits the source into multiple C files, usually by purpose. In this case a gpio.c
file is provided which does gpio setup, and i2c-bitbang.c includes the i2c routines. A header file
for each is provided which details the interfaces provided by the files. These are the public interfaces
provided by each file, and a file wanting to use them will include this header file and then can call the
functions listed. When compiling the C compiler links all of the files together and makes sure that
calls you do to functions in other C files get linked together properly.

If you have code in a C file that should remain local to the file and not be called by external code,
you can add the static identifier in front and that function or variable will not be visible outside the
source code file.

4. Enable bit-bang i2c support (6 points)

Modify the provided i2c-bitbang.c file. Running make should build your code. It will create the
i2c-bitbang.o object file, then automatically link this against the i2c-test and i2c-cool
executables.

Comment your code!

The code in gpio.c already does much of the GPIO configuration so you don’t have to. You will
need to fill in various functions in the i2c-bitbang.c file before your display will start to work.

(a) i2c SDA/SCL helper functions

i. SDA_gpio_pull_low()
This routine should change the SDA GPIO write direction to output and then write a ’0’ to
the (already open) sda_fd value file descriptor.
You can use the provided gpio_set_output() routine to change the write direction:
gpio_set_output(SDA_GPIO);

ii. SCL_gpio_pull_low()
This routine should be like the previous one but pull SCL low instead of SDA.

iii. SDA_gpio_float_high()
On an open collector bus with resistor pullups you do not want to force a pin high. Instead,
you want to let it float high by not driving the output at all. An easy way to do that is to set
the pin to input mode (you can use gpio_set_input())

iv. SCL_gpio_float_high()
This routine should be like the previous one but letting SCL float high instead of SDA.

2

http://www.adafruit.com/datasheets/ht16K33v110.pdf
http://web.eece.maine.edu/~vweaver/classes/ece471/ece471_hw6_code.tar.gz


v. read_SDA()
This routine should read the SDA line and return the value.
First change the GPIO direction to input (you can use the provided
gpio_set_input(SDA_GPIO);). Be sure to rewind sda_fd with
lseek(sda_fd,0,SEEK_SET); before reading. Read the value and return 0 or 1.
Remember to convert from ASCII to decimal!

vi. read_SCL()
This routine should be like read_SDA() but for SCL instead. Be careful when cut-and-
pasting that you convert all the sda to scl.

(b) i2c protocol bit functions
i. i2c_start_bit()

This routine should send an i2c start bit. If you recall, this means SDA goes from high to
low while SCL is high. Ensure that SCL stays high for a long enough time (you can use the
provided I2C_delay() routine.

ii. i2c_stop_bit()
This routine should send an i2c stop bit. This is much like the previous start bit routine, only
SDA goes from low to high while SCL is high.

iii. i2c_read_bit()
Let SDA go high and wait a delay.
Let SCL go high and wait a delay.
At this point the slave device should have set SDA so read the value of SDA.
Delay, then pull SCL low.

iv. i2c_write_bit()
Pull SCL low.
Set SDA to the value you want.
Delay. Then let SCL go high.
Delay. Then pull SCL back low.

(c) i2c protocol byte functions
i. i2c_write_byte()

This routine writes an i2c byte.
To do this you will need to write all 8 bits in the passed in byte value.
One way to do this is have a loop that iterates over all 8 bits (remember, most significant bit
first) and calls i2c_write_bit() on each.
After sending all 8-bits, read the NACK bit with i2c_read_bit() and make sure it is 0
signifying the device received the data OK.

Once you have all of the above implemented, running ./i2c-test should blink “ECE”.

What happens is the code in main writes a series of i2c transactions that configure the display much
like in HW#5.

The provided write_i2c() call sends a start bit, writes all bytes using the i2c_write_byte()
function, and sends a stop bit. The byte array sent in has the address as the first byte (7-bits plus
direction) followed by the commands to send to the device.

3



5. Something Cool (1 point)

Copy your i2c-test.c code over to i2c-cool.c and modify it to do something extra. It can just
be the same blinking ECE 471 or whatever you did for HW5, or you can try out something different
this time. Put into the README some notes about what your code does.

Alternately, hook up the i2c bus to a logic analyzer (an analog discovery board) and send a plot of an
i2c transaction along with your homework submission. Does the i2c waveform look anything like the
one shown in the lecture notes? How does it compare with the results generated by the Pi in HW#5?

6. i2c Questions (1 point)
Answer the following in the README file:

(a) Does your code in this assignment implement the full i2c protocol? What is missing?

(b) The assignment does not specifically ask you to implement robust error handling (so you won’t
be graded on that). Given that, does your code handle all possible error conditions? List at least
one error condition your current code would not handle well.

7. Other Questions (1 point)

(a) How do you indicate that a function in C should only visible within its own .c file?

(b) How does Linux on your Pi know that the board has an i2c bus? How does it know what address
this i2c bus lives at?

8. Linux Fun (1 point)

(a) You can use the cat command to dump a text file to the screen.
Run cat /proc/interrupts which will give you status on the interrupts that have hap-
pened on your Pi since it was turned on.

List a name of one of the interrupt sources.

(b) There is a command called yes. Run it and see what it does. Why do you think a utility like this
exists?

9. Submitting your work

• Run make submit which will create a hw6_submit.tar.gz file containing Makefile,
README, i2c-bitbang.c, and i2c-cool.c
You can verify the contents with tar -tzvf hw6_submit.tar.gz

• e-mail the hw6_submit.tar.gz file to me by the homework deadline. Be sure to send the
proper file!

4


