ECE 471 – Embedded Systems Lecture 1

Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

4 September 2019

Introduction

- Distribute and go over syllabus
 - Homeworks, 50%: 11 total, lowest dropped. Most will involve the Raspberry Pi. Generally will be due on Friday by beginning of class. Will usually have at least a week to do them. Submission by e-mail, grades sent in response to that e-mail, if you don't like that let me know. Will send e-mail when assignment posted on website.
 - Midterms, two, 15% total

Probably in October and mid-November \circ Final, 10%

- Class participation, 5%
 Part of this is returning borrowed items at end.
- Project, 20%: Involves using what you learned to do a small embedded project, with a final writeup and demo the last week of classes. More details as we get closer.
- No textbook.
- Late work penalty
- Class notes will be posted on the website.

- Will involve C coding, plus some minimal ARM assembly language and Linux knowledge. I will review everything you need to know.
- Might have some more C instruction this year based on exit-interview feedback. Believe it or not we actually listen.
- Labspace: no dedicated lab. In past students have used the electronics lab because HDMI and keyboards available, not sure situation with renovated labs. If it's an issue let me know.
- Academic Honesty

- This has been a problem in the past!
- Do not copy code from other students, either current or from previous years.
- \circ Asking help from the professor/TA is fine
- Asking for general help, or discussing with classmates is fine
- Even having someone look over your code to help find a problem is fine
- Just don't copy someone else's code and submit it as your own
- Also don't copy code off the internet (again, looking

for advice online is fine, but copying code directly is not)

Raspberry Pi

- We will be using a Raspberry Pi. Model 3B+ is currently probably the best, but any of the models (A, B, A+, B+, 2B, 3B) should work with the homeworks. No compute node. Zero probably will work but a bigger pain to use (no Ethernet, no GPIO header).
- You will also need an SD card (4GB or bigger). Older Pis take the wide ones, newer the narrow ones. Usually not a problem as they tend to come with those adapters.

You will want to install Linux (I tend to use Raspbian); getting a card pre-installed with Raspbian or "NOOBS" can save an hour or so of writing the SD card.

- For power you will need a USB-micro cable. You can power from any desktop or laptop (or a 1A or higher USB charger)
- The recently released Pi-4 is usable for this class, but it has a lot of new features which make it a bit harder to use (it used micro-HDMI for output, it needs a USB-C power supply)

Other Accessories

It can be fun to accessorize, but the stuff listed on the previous page is all you really need. Listed below are some *optional* extras you can get.

- A case can be useful, if only to avoid accidentally shorting out things. Many people get by just fine without one.
- A wall outlet adapter (a USB charger more or less)
- A dedicated GPIO connector to breadboard adapter
- HDMI cable and USB keyboard
- USB serial

• Ethernet cable (or wireless)

Other Hardware

- You will eventually need a breadboard. I know EE/CE students probably already have many already.
- I will loan out various devices/displays when necessary.
 I'll expect them back at the end of the year so try not to lose them.

Embedded Systems

What is an embedded system?

- Embedded.
 Inside of something.
- Fixed-purpose.
 Why? You can optimize.
 For cost, power, size, reliability, performance.
- Resource constrained.
 Small CPU, Memory, Disk, I/O, Bandwidth
- Often real-time constraints.

What are some embedded systems?

Seemingly everything has a computer in it these days. IoT.

- Cellphone (though lines blurring, general purpose)
- Vehicles (Cars/Airplanes)
- Appliances (TVs, Washers, Microwaves)
- Medical Equipment
- Industrial/Factory
- Space Probes
- Video Games?

What Size CPU/Memory?

- Anything from 8-bit/tiny RAM to 32-bit 1GHz 1GB
- Performance has greatly improved over the years. ARM Cortex A9 in an iPad2 scores same on Linpack as an early Cray supercomputer

Туре			Speed	RAM	Disk	GPU
Intel	Xeon	64-bit	3GHz	8GB	1TB	Nvidia
ARM	A53	64-bit(?)	1GHz	1GB	8GB	VC4
ARM	M0	32-bit	32MHz	16kB	128kB	none
MOS	6502	8-bit	1MHz	64kB	140kB	none

