
ECE 471 – Embedded Systems
Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

18 September 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#2

◦ Describe “Something Cool”

◦ ANSI escape code

◦ linux logo

◦ Command line arguments

1



Loader

• /lib/ld-linux.so.2

• loads the executable (handles linking in libraries, etc)

2



Static vs Dynamic Libraries

• Static: includes all code in one binary.

Large binaries, need to recompile to update library code,

self-contained, don’t have to worry about incompatible

updates

• Dynamic: library routines linked at load time.

Smaller binaries, share code across system, automatically

links against newer/bugfixes when system library updated

3



How a Program is Loaded

• Kernel Boots

• init started

• init calls fork() – makes an exact copy of itself

• child calls exec() – replaces itself with executable from

disk

• Kernel checks if valid ELF. Passes to loader

4



• Loader loads it. Clears out BSS. Sets up stack. Jumps

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

5



What the OS gives you at start

• Registers

• Instruction pointer at beginning

• Stack

• command line arguments, aux, environment variables

• Large contiguous VM space

6



Assembly Language: What’s it good for?

• Understanding your computer at a low-level

• Shown when using a debugger

• It’s the eventual target of compilers

• Operating system writers (some things not expressible in

C)

• Embedded systems (code density)

• Research. Computer Architecture. Emulators/Simulators.

• Video games (or other perf critical routines, glibc, kernel,

etc.)

7



ARM32 Architecture

Note, ARM64 (AARCH64) is very different

• 32-bit

• Load/Store

• Can be Big-Endian or Little-Endian (usually little)

• Fixed instruction width (32-bit, 16-bit THUMB)

(Thumb2 is variable)

• arm32 opcodes typically take three arguments

(Destination, Source, Source)

• Cannot access unaligned memory (optional newer chips)

8



• Status flag (many instructions can optionally set)

• Conditional execution

• Complicated addressing modes

• Many features optional (FPU [except in newer], PMU,

Vector instructions, Java instructions, divide, etc.)

9



Registers

• Has 16 GP registers (more available in supervisor mode)

• r0 - r12 are general purpose

• r11 is sometimes the frame pointer (fp) [iOS uses r7]

• r13 is stack pointer (sp)

• r14 is link register (lr)

• r15 is program counter (pc)

reading r15 usually gives PC+8

• 1 status register (more in system mode).

NZCVQ (Negative, Zero, Carry, oVerflow, Saturate)

10


