
ECE 471 – Embedded Systems
Lecture 13

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 November 2019

http://web.eece.maine.edu/~vweaver


Announcements

• How is HW#4 going

◦ After exporting GPIO18, you might get an error every

additional time you run your code because GPIO18

already exists.

For this HW you can ignore the error. Other options

are to skip the export step and try opening the gpio18

files, but if they aren’t there then go back and export

it.

◦ A similar issue is happening, that on first exporting

1



GPIO18 then the first access to the files fails. This

is because udev takes some time before applying the

proper permissions to the newly opened file. This only

happens the first time you run things after boot. To fix

this you can either pause after exporting, or otherwise

you can (on failure) repeat a few times if you get an

error before giving up.

• After discussion, we’ve finalized the 1st midterm date to

be Friday, October 18th

2



Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards

in ECE271.

• Compile code

• Prepare for upload (hexbin?)

• Upload into FLASH

• Boots to offset

3



• Setup, flat memory (usually), stack at top, code near

bottom, IRQ vectors

• Handle Interrupts

• Must do I/O directly (no drivers)

Although if lucky, can find existing code.

• Code is specific to the hardware you are on

4



Instead, one can use an Operating System

5



Why Use an Operating System?

• Provides Layers of Abstraction

◦ Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

◦ Abstract software: with VM get linear address space,

same system calls on all systems

• Other benefits:

◦ Multi-tasking / Multi-user

6



◦ Security, permissions (Linus dial out onto /dev/hda)

◦ Common code in kernel and libraries, no need to re-

invent

◦ Handle complex low-level tasks (interrupts, DMA,

task-switching)

• Abstraction has a cost

◦ Higher overhead (speed)

◦ Higher overhead (memory)

◦ Unknown timing

• What about other things?

◦ Easy to code for? Provide examples

7



◦ Nice GUI interface? Sometimes

8



What’s included with an OS

• kernel / drivers (syscall barrier) – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.

9



Bypassing Linux to hit hardware directly

• Linux does not support things like pullups, but people

have written code that will poke the relevant bits directly.

10



Bypassing Linux for speed

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Trying to generate fastest GPIO square wave.
shell gpio util 40Hz
shell sysfs 2.8kHz

Python WiringPi 28kHz
Python RPi.GPIO 70kHz

C sysfs (vmw) 400kHz
C WiringPi 4.6MHz
C libbcm2835 5.4MHz
C Rpi Foundation “Native” 22MHz

11

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/


Operating Systems Types

• Monolithic kernel – everything in one big address space.

Something goes wrong, lose it all. Faster

• Microkernel – separate parts that communicate by

message passing. can restart independently. Slower.

• Microkernels were supposed to take over the world.

Didn’t happen. (GNU Hurd?)

• Famous Torvalds (Linux) vs Tannenbaum (Minix)

flamewar

12



Common Desktop/Server Operating
Systems

• Windows

• OSX

• Linux

• FreeBSD / NetBSD / OpenBSD

• UNIX (Irix/Solaris/AIX/etc.)

• BeOS/Haiku

13



Embedded Operating Systems

• Microsoft WinCE, Windows Mobile

• Linux / Android

• VXworks – realtime OS, used on many space probes

• Apple iOS

• QNX – realtime microkernel UNIX-like OS, owned by

Blackberry now

• Cisco iOS

• ThreadX – found in Pi GPU

14



Embedded Linux Distributions

• linaro – consortium that work on ARM software

• openwrt – small distro initially designed for wireless

routers

• yocto – Linux Foundation sponsored embedded distro

• maemo – embedded distro originally by Nokia (obsolete)

• MeeGo – continuation of maemo, also obsolete

15



• Tizen – Follow up on MeeGo, by Samsung and Intel

• Ängstrom – Merger of various projects

• And many others. It’s very easy to put together a Linux

distribution

16



Linux/UNIX History

• UNIX invented early 70s at Bell Labs

• Widely distributed by academics

• Berkeley makes their own BSD version

• By the 90s many companies selling UNIX workstations.

Expensive.

• Linus Torvalds in 1991 wanted own UNIX-like OS. Minix

(which he used for development) limited to academic use

17



and non-free. The various BSDs caught up in lawsuit

with AT&T. So he wrote his own.

18



i2c

• See next lecture for i2c notes

19


