
ECE 471 – Embedded Systems
Lecture 17

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 October 2019

http://web.eece.maine.edu/~vweaver


Announcements

• How did HW#5 go?

• Midterm next Friday, the 18th

• No class Wednesday the 16th (Career Fair)

1



Homework 6 – Background

• You have two weeks to do this one

• Handout should cover most of it

• bit-banging i2c

• Why not bitbang everything? A pain. Hardware does it

for you. Hardware even does more, can often buffer or

DMA, timing more exact.

• Why might you want to bitbang i2c? Only have one i2c

bus? Or no i2c bus, only GPIOs? kernel has bitbang

driver

2



• Tell my boring frontpath i2c-bitbang story

3



Homework 6 – Implementation

• Use the sysfs gpio interface and driving the SDA and

SCL lines manually to talk to the 4x7 LED display

• Still easier than full bitbang, where you’d have to write

to various i/o addresses

• A lot of the code is provided for you, follow the directions

• How do you set SDA low?

Set to output, write a ’0’

• How do you set SDA high?

Do not write a ’1’ !

4



Open collector, need to let it float.

Set to ’input’ works.

5



Homework 6 – Multiple Files

• This homework has the compiler compiling multiple small

files and then linking them together.

• Why do this? Easier to edit smaller files, easier if

collaborating with others, lets you share code without

cut and pasting

• gcc -c file.c creates file.o

• Link a number of files together

gcc -o executable file1.o file2.o file3.o

• This is how you create libraries (static just a matter of

6



ar, dynamic are a bit more complicated)

• All global functions/vars are exported, unless you declare

them static

• How do you know how to call functions in other files?

Need to pre-declare prototype so the compiler knows

how to set up the registers before calling. Traditionally

with C this is done in a .h header file

• Include files with #include "file.h". You may also

have seen angle brackets, what is the difference?

• By default all functions/global vars are exported. How

can you specify to only be visible in own file? Use the

7



static keyword.

8



Midterm Review

• Be sure you know the four characteristics of an embedded

system, and can make an argument about whether a

system is one or not.

◦ Inside of something (embedded)

◦ Fixed-purpose

◦ Resource constrained

◦ Real time constraints (if you use this, be sure you

understand)

• Benefits/downsides of using an operating system on an

9



embedded device

◦ Cost, time to market, helper libraries, overhead, timing

• C code

◦ Have you look at some code and know what it is doing

◦ Mostly know what file I/O, loops, and string

manipulations work (things we’ve done in the

homeworks)

• Code Density

◦ Why is dense code good in embedded systems?

◦ What changes were needed to ARM32 to make it fit

into 16-bit THUMB?

10



• GPIO & i2c

◦ Know some of its limitations (speeds, length of wires,

number of wires, etc)

◦ Don’t need to know the raw protocol

◦ Know the Linux interface (open, ioctl, write) and be

familiar with how those system calls work

11



Boot Methods

Firmware can be quite complex.

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)

12



• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?

13



Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

• Why partition disks?

◦ Different filesystems; bootloader can only read FAT?

14



◦ Dual/Triple boot (multiple operating systems)

◦ Old: filesystems can’t handle disk size

15



Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use

16



it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.

17



Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where

18



it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide

19



Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel

20



to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.

21



Booting Linux

• Bootloader jumps into OS entry point

• Set Up Virtual Memory

• Setup Interrupts

• Detect Hardware / Install Device Drivers

• Mount filesystems

• Pass control to userspace / call init

22



• Run init scripts

• rc boot scripts, /etc/rc.local

Start servers, or “daemons” as they’re called under

Linux.

• fork()/exec(), run login, run shell

23



How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

24



to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

25



Viewing Processes

• You can use top to see what processes are currently

running

• Also ps but that’s a bit harder to use.

26


