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Announcements

• How did HW#5 go?

• Midterm next Friday, the 18th

• No class Wednesday the 16th (Career Fair)
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Homework 6 – Background

• You have two weeks to do this one

• Handout should cover most of it

• bit-banging i2c

• Why not bitbang everything? A pain. Hardware does it

for you. Hardware even does more, can often buffer or

DMA, timing more exact.

• Why might you want to bitbang i2c? Only have one i2c

bus? Or no i2c bus, only GPIOs? kernel has bitbang

driver
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• Tell my boring frontpath i2c-bitbang story
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Homework 6 – Implementation

• Use the sysfs gpio interface and driving the SDA and

SCL lines manually to talk to the 4x7 LED display

• Still easier than full bitbang, where you’d have to write

to various i/o addresses

• A lot of the code is provided for you, follow the directions

• How do you set SDA low?

Set to output, write a ’0’

• How do you set SDA high?

Do not write a ’1’ !
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Open collector, need to let it float.

Set to ’input’ works.
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Homework 6 – Multiple Files

• This homework has the compiler compiling multiple small

files and then linking them together.

• Why do this? Easier to edit smaller files, easier if

collaborating with others, lets you share code without

cut and pasting

• gcc -c file.c creates file.o

• Link a number of files together

gcc -o executable file1.o file2.o file3.o

• This is how you create libraries (static just a matter of
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ar, dynamic are a bit more complicated)

• All global functions/vars are exported, unless you declare

them static

• How do you know how to call functions in other files?

Need to pre-declare prototype so the compiler knows

how to set up the registers before calling. Traditionally

with C this is done in a .h header file

• Include files with #include "file.h". You may also

have seen angle brackets, what is the difference?

• By default all functions/global vars are exported. How

can you specify to only be visible in own file? Use the
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static keyword.
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Midterm Review

• Be sure you know the four characteristics of an embedded

system, and can make an argument about whether a

system is one or not.

◦ Inside of something (embedded)

◦ Fixed-purpose

◦ Resource constrained

◦ Real time constraints (if you use this, be sure you

understand)

• Benefits/downsides of using an operating system on an
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embedded device

◦ Cost, time to market, helper libraries, overhead, timing

• C code

◦ Have you look at some code and know what it is doing

◦ Mostly know what file I/O, loops, and string

manipulations work (things we’ve done in the

homeworks)

• Code Density

◦ Why is dense code good in embedded systems?

◦ What changes were needed to ARM32 to make it fit

into 16-bit THUMB?
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• GPIO & i2c

◦ Know some of its limitations (speeds, length of wires,

number of wires, etc)

◦ Don’t need to know the raw protocol

◦ Know the Linux interface (open, ioctl, write) and be

familiar with how those system calls work
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Boot Methods

Firmware can be quite complex.

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)
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• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?
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Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

• Why partition disks?

◦ Different filesystems; bootloader can only read FAT?
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◦ Dual/Triple boot (multiple operating systems)

◦ Old: filesystems can’t handle disk size
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Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use
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it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.
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Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where
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it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide
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Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel
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to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.
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Booting Linux

• Bootloader jumps into OS entry point

• Set Up Virtual Memory

• Setup Interrupts

• Detect Hardware / Install Device Drivers

• Mount filesystems

• Pass control to userspace / call init
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• Run init scripts

• rc boot scripts, /etc/rc.local

Start servers, or “daemons” as they’re called under

Linux.

• fork()/exec(), run login, run shell
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How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps
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to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.
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Viewing Processes

• You can use top to see what processes are currently

running

• Also ps but that’s a bit harder to use.
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