ECE 471 — Embedded Systems
Lecture 17

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

11 October 2019

http://web.eece.maine.edu/~vweaver

Announcements

e How did HW#5 go?
e Midterm next Friday, the 18th

e No class Wednesday the 16th (Career Fair)

Homework 6 — Background

e You have two weeks to do this one

e Handout should cover most of it

e bit-banging 12c

e \Why not bitbang everything? A pain. Hardware does it
for you. Hardware even does more, can often buffer or
DMA, timing more exact.

e \Why might you want to bitbang i2c? Only have one i2c
bus? Or no i2c bus, only GPIOs? kernel has bitbang
driver

-y)

e Tell my boring frontpath i2c-bitbang story

Homework 6 — Implementation

e Use the sysfs gpio interface and driving the SDA and
SCL lines manually to talk to the 4x7 LED display

e Still easier than full bitbang, where you'd have to write
to various i/o addresses

e A lot of the code is provided for you, follow the directions

e How do you set SDA low?
Set to output, write a '0’

e How do you set SDA high?
Do not writea '1'!

-y 4

Open collector, need to let it float.
Set to 'input’ works.

Homework 6 — Multiple Files

e [his homework has the compiler compiling multiple small
files and then linking them together.

e Why do this? Easier to edit smaller files, easier if
collaborating with others, lets you share code without
cut and pasting

e gcc —c file.c creates file.o

e Link a number of files together
gcc —-o executable filel.o file2.0 file3.o

e This is how you create libraries (static just a matter of

-y 6

ar, dynamic are a bit more complicated)

e All global functions/vars are exported, unless you declare
them static

e How do you know how to call functions in other files?
Need to pre-declare prototype so the compiler knows
how to set up the registers before calling. Traditionally
with C this is done in a .h header file

e Include files with #include "file.h". You may also

nave seen angle brackets, what is the difference?

e By default all functions/global vars are exported. How

can you specify to only be visible in own file? Use the

-y ;

static keyword.

Midterm Review

e Be sure you know the four characteristics of an embedded
system, and can make an argument about whether a
system Is one or not.

o Inside of something (embedded)

-ixed-purpose

O
o Resource constrained
O

Real time constraints (if you use this, be sure you
understand)

e Benefits/downsides of using an operating system on an

-y 9

embedded device
o Cost, time to market, helper libraries, overhead, timing
e C code
o Have you look at some code and know what it is doing
o Mostly know what file 1/O, loops, and string
manipulations work (things we've done in the
homeworks)
e Code Density
o Why is dense code good in embedded systems?
o What changes were needed to ARM32 to make it fit
into 16-bit THUMB?

/Y 10

e GPIO & i2c
o Know some of its limitations (speeds, length of wires,
number of wires, etc)
o Don't need to know the raw protocol
o Know the Linux interface (open, ioctl, write) and be
familiar with how those system calls work

-y 11

Boot Methods

Firmware can be quite complex.

e Floppy
e Hard-drive (PATA/SATA/SCSI/RAID)

e CD/DVD
e USB

e Network (PXE/tftp)

12

e Flash, SD card
e [ape
e Networked tape

e Paper tape? Front-panel switches?

13

Disk Partitions

e Way to virtually split up disk.

e DOS GPT - old partition type, in MBR. Start/stop
sectors, type

e Types: Linux, swap, DOS, etc

e GPT had 4 primary and then more secondary

e Lots of different schemes (each OS has own, Linux
supports many). UEFI more flexible, greater than 2TB

e \Why partition disks?
o Different filesystems; bootloader can only read FAT?

-y 14

o Dual/Triple boot (multiple operating systems)
o Old: filesystems can’'t handle disk size

15

Device Detection

e x80, well-known standardized platform. What windows
needs to boot. Can auto-discover things like PCI bus,
USB. Linux kernel on x86 can boot on most.

e Old ARM, hard-coded. So a rasp-pi kernel only could
boot on Rasp-pi. Lots of pound-defined and hard-coded
hw info.

e New way, device tree. A blob that describes the
hardware. Pass it in with boot loader, and kernel can use

-y 16

it to determine what hardware is available. So instead
of Debian needing to provide 100 kernels, instead just
1 kernel and 100 device tree files that one is chosen at
install time.

e Does mean that updating to a new kernel can be a pain.

-y 17

Detecting Devices

There are many ways to detect devices

e Guessing/Probing — can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data
sent to It

e Standards — always knowing that, say, VGA is at address
0xa0000. PCs get by with defacto standards

e Enumerable hardware — busses like USB and PCI allow
you to query hardware to find out what it is and where

18

It 1s located

e Hard-coding — have a separate kernel for each possible
board, with the locations of devices hard-coded in. Not
very maintainable in the long run.

e Device Trees — see next slide

-y 19

Devicetree

e Traditional Linux ARM support a bit of a copy-paste and
+#ifdef mess

e Each new platform was a compile option. No common
code; kernel for pandaboard not run on beagleboard not
run on gumstix, etc.

e Work underway to be more like x86 (where until recently
due to PC standards a kernel would boot on any x86)

e A “devicetree” passes in enough config info to the kernel

20

to describe all the hardware available. Thus kernel much
more generic

e Still working on issues with this.

-y 21

Booting Linux

e Bootloader jumps into OS entry point

e Set Up Virtual Memory

e Setup Interrupts

e Detect Hardware / Install Device Drivers
e Mount filesystems

e Pass control to userspace / call init

22

e Run init scripts

e rc boot scripts, /etc/rc.local
Start servers, or “daemons” as they're called under
Linux.

e fork()/exec(), run login, run shell

-y 23

How a Program is Loaded on Linux

e Kernel Boots

e init started

e init calls fork()

e child calls exec ()

e Kernel checks if valid ELF. Passes to loader

e Loader loads it. Clears out BSS. Sets up stack. Jumps

-y o4

to entry address (specified by executable)
e Program runs until complete.

e Parent process returned to if waiting. Otherwise, init.

25

Viewing Processes

e You can use top to see what processes are currently
running

e Also ps but that's a bit harder to use.

-y 26

