
ECE 471 – Embedded Systems
Lecture 19

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 October 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Project handout posted to website

• Midterms still note quite graded

1

HW#6 Note

• How to take a byte and break into bits

• With C it’s a matter of shifting and masking

• You can do something like the following (there are a lot

of ways to do this in C)

u n s i g n e d c h a r b y t e=0x5a ;

f o r (x =0;x<8; x++) {
i f (b y t e&(1<<x)) {

p r i n t f (” 1 ”) ;

2

}
e l s e {

p r i n t f (” 0 ”) ;

}
}

• Note: for i2c we send the bits MSB (top bit) first so the

code for that is going to look a bit different

3

Project Preview

• The handout for this has been posted to the course

website.

• Can work in groups

• Embedded system (any type, not just Pi)

• Written in any language (asm, C, python, C++, Java,

etc.)

• Do some manner of input and some manner of output

using the various capabilities we discussed

• I have a large amount of i2c, spi, and other devices that

4

you can borrow if you want to try anything interesting.

• Past projects: games, robots, weather stations, motor

controllers, music visualization, etc.

• Will be a final writeup, and then a short presentation and

demo in front of the class during last week of classes.

• Can compliment another project, but must have some

original code

5

Can you get Real-Time on Modern
Systems?

• Modern hardware does make it difficult with potentially

unpredictable delay

• Some machines provide special, deterministic co-

processors to help (PRUs on the beaglebone)

• You can still attempt to get real-time by coding your OS

carefully

6

Real Time Operating Systems

How do RTOSes differ from regular OSes?

• Low-latency of OS calls (reduced jitter)

• Fast/Advanced Context switching (especially the

scheduler used to pick which jobs to run)

• Often some sort of job priority mechanism that allows

high-importance tasks to run first

7

Software Worst Case – Context Switching

• OS provides the illusion of single-user system despite

many processes running, by switching between them

quickly.

• Switch rate in general 100Hz to 1000Hz, but can vary

(and is configurable under Linux). Faster has high

overhead but better responsiveness (guis, etc). Slower

not good for interactive workloads but better for long-

running batch jobs.

8

• You need to save register state. Can be slow, especially

with lots of registers.

• When does context switch happen? Periodic timer

interrupt. Certain syscalls (yield, sleep) when a process

gives up its timeslice. When waiting on I/O

• Who decided who gets to run next? The scheduler.

• The scheduler is complex.

• Fair scheduling? If two users each have a process, who

runs when? If one has 99 and one has 1, which runs

9

next?

• Linux scheduler was O(N). Then O(1). Now O(log N).

Why not O(N 3)

10

Common OS scheduling strategies

• Event driven – have priorities, highest priority pre-empts

lower

• Time sharing – only switch at regular clock time, round-

robin

11

Scheduler example

• Static: Rate Monotonic Scheduling – shortest job goes

first

• Dynamic: Earliest deadline first

• Three tasks come in. a. finish in 10s, 4 long. b. finish

in 3, 2 long, c. finish in 5, 1 long

• In order they arrive, aaaabbccc bad for everyone

• RMS: cbbbaaaa works

12

• EDF: bbbcaaaa also works.

• Lots of information on various scheduling algorithms

13

Locking

• When shared hardware/software and more than one thing

might access at once

• Multicore: thread 1 read temperature, write to

temperature variable

thread 2 read temperature variable to write to display

let’s say it’s writing 3 digit ASCII. Goes from 79 to 80.

Will you always get 79 or 80? Can you get 70 or 89?

• How do you protect this? With a lock. Special data

structure, allows only one access to piece of memory,

14

others have to wait.

• Can this happen on single core? Yes, what about

interrupts.

• Implemented with special instructions, in assembly

language

• Usually you will use a library, like pthreads

• mutex/spinlock

• Atomicity

15

Priority Inversion Example

• Task priority 3 takes lock on some piece of hardware

(camera for picture)

• Task 2 fires up and pre-empts task 3

• Task 1 fires up and pre-empts task 1, but it needs same

HW as task 3. Waits for it. It will never get free.

(camera for navigation?)

• Space probes have had issues due to this.

16

Real Time Operating System

• Can it be hard real time?

• Simple ones can be mathematically provable

• Otherwise, it’s a best effort

17

Priority Based, like Vxworks

• Each task has priority 0 (high) to 255 (low)

• When task launched, highest priority gets to run

• Other tasks only get to run when higher is finished or

yields

• What if multiple of same priority? Then go round-robin

or similar

18

Is Regular Linux a RTOS

• Not really

• Can do priorities (“nice”) but the default ones are not

RT.

19

Real Time Linux

• Project to have a small supervisor RTOS and run Linux

as a process

• Code that needed a compatible OS interface could call

into this process-Linux, but it could always be pre-

empted

• Not supported anymore?

20

PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

• Have been gradually merging changes upstream

21

Typical kernel, when can you pre-empt

• When user code running

• When a system call or interrupt happens

• When kernel code blocks on mutex (lock) or voluntarily

yields

• If a high priority task wants to run, and the kernel is

running, it might be hundreds of milliseconds before you

get to run

22

• Pre-empt patch makes it so almost any part of kernel can

be stopped (pre-empted). Also moves interrupt routines

into pre-emptible kernel threads.

23

Linux PREEMPT Kernel

• What latencies can you get?

10-30us on some x86 machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB, etc.)

Slow hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

• Priorities

◦ Linux Nice: -20 to 19 (lowest), use nice command

◦ Real Time: 0 to 99 (highest)

24

◦ Appears in ps as 0 to 139?

25

Changes to your code

• What do you do about unknown memory latency?

◦ mlockall() memory in, start threads and touch at

beginning, avoid all causes of pagefaults.

• What do you do about priority?

◦ Use POSIX interfaces, no real changes needed in code,

just set higher priority

◦ See the chrt tool to set priorities.

• What do you do about interrupts?

◦ See next

26

Interrupts

• Why are interrupts slow?

• Shared lines, have to run all handlers

• When can they not be pre-empted? IRQ disabled? If

a driver really wanted to pause 1ms for hardware to be

ready, would often turn off IRQ and spin rather than

sleep

• Higher priority IRQs? FIR on ARM?

• Top Halves / Bottom Halves

• Unrelated, but hi-res timers

27

Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

28

Non-Linux RTOSes

• Interesting reference: https://rtos.com/rtos/

• Often are much simpler than Linux

• Some only need a few kilobytes of overhead

• Really, just replacements for an open-coded main loop

that did a few tasks sequentially. (Effectively round-

robin). Can possibly get better response if you multitask.

• Provide fast context-switching, interrupt handling,

29

https://rtos.com/rtos/

process priority (scheduling), and various locking/mutex

libraries

30

List of some RTOSes

• Vxworks

• Neutrino

• Free RTOS

• Windows CE

• MongooseOS (recent LWN article?)

• ThreadX (in the Pi GPU)

31

