
ECE 471 – Embedded Systems
Lecture 24

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 November 2019

http://web.eece.maine.edu/~vweaver

Announcements

• HW#8 was posted

• Keep thinking about projects, topic due Friday.

1

Midterm Review

• Booting on the Pi

◦ What a bootloader does

◦ Why Pi is unusual

• Real Time

◦ Definitions

◦ Is this hard, soft, firm

• i2c/SPI/1-wire

◦ Know the tradeoffs between i2c, SPI, 1-wire

◦ Be able to follow the C code for them

2

HW#7 Review – Questions

• Anti-lock brakes hard/soft/firm realtime?

Hard. If things go wrong would be disaster

• Stereo change channel hard/soft/firm realtime?

Soft. Prefer it not to be late, but still want to happen

• Video coming in at 60fps decoding?

Firm, if frame decoded late it is useless

• Disadvantage of SPI?

More wires, no standard, no errors

• Advantage of SPI?

3

Lower Power, Full Duplex, No max speed

• TMP36 on end of cable.

Voltage Drop, Noise?

Datasheet has two options, convert to current, or an

extra resistor.

• Minimum frequency of 10kHz or results invalid. Maybe

cannot go this fast if bitbanging via GPIO. Also context

switch in middle, Linux not realtime?

4

HW#7 Review – Linux “fun”

• /dev/null

• /dev/full

• /dev/zero

• /dev/random – give explanation on sources of

randomness (entropy), pseudo-randomness, etc.

• Mention related DOS/Windows compatibility issue

5

C string review

String manipulation is famously horrible in C. There are

many ways to get the ”YES” and ”t=24125” values out

of the text file for HW#8. Any you choose is fine.

• There are multiple ways to read files into a string in C

Assume char string[1024];

◦ fd=open("filename",RD ONLY);

read(fd,string,1023); close(fd);

◦ FILE *fff; fff=fopen("filename","r"); fread(buffer,size,count,fff);

fclose(fff)

6

You can also use fgets(buffer,size,fff);

◦ Advanced: use mmap()

• C strings

◦ In C, characters are NUL (0) terminated character

arrays (usually 8-bit bytes). Usually ASCII or UTF8

◦ Other languages might be unicode, 16-bit, wchar

◦ You can use either pointer or array access to get a

value (string[0] is the same as *string)

◦ Note that double quotes indicate a string, while single

quotes indicate a single character

◦ It is very easy to accidentally go off the end of a string

7

and corrupt memory

◦ Alternatives? Fancy libraries? Pascal strings (where

first char is the length?)

◦ Always be sure your strings are terminated, otherwise

bad things can happen (and not all C string

manipulation functions do this properly, see strcpy(),

strncpy(), strlcpy()

• Finding a location / substring in a larger string

◦ If you trust the Linux kernel developers to keep a

“stable ABI” you can assume the temperature will

always be a fixed offset and hard code it. This can be

8

a bit dangerous.

◦ You can use the scanf() series of functions to parse

the string (either fscanf() directly, or sscanf() on the

string)

One helpful hint, putting a ‘*’ in a conversion (like

%*s tells scanf to read in the value but ignore it.

◦ You can use the strstr() search for substring C-

library function, maybe in conjunction with strtok()

◦ You can manually parse the array.

Using array syntax, something like:

i=0; while(string[i]!=0) {

9

if (string[i]==’t’) break; i++ }
Using pointer syntax, something like:

char *a; a=string; while(*a!=0) {
if (*a==’t’) break; a++; }

• Pointing into a string

◦ If you searched for ”t=” you might now have a pointer

a to something like ”t=12345”. To point to 12345

you can just add 2 to the string pointer.

◦ printf("%s\n",string+2);
◦ printf("%s\n",&string[2]);
• Converting string to decimal or floating point

10

◦ atoi() converts string to integer. What happens on

error?

◦ strtol() will give you an error but is more complex

to use

◦ atof() and strtod() will do floating point

• Comparing strings

◦ Can you just use ==? NO!

◦ Be careful using strcmp() (or even better, strncmp()

they have unusual return value

less than, 0 or greater than depending. 0 means match

So you want something like

11

if (!strcmp(a,b)) do something();

12

